Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Epithelial stem cells in adult mammalian skin are known to maintain epidermal, follicular and sebaceous lineages during homeostasis. Recently, Merkel cell mechanoreceptors were identified as a fourth lineage derived from the proliferative layer of murine skin epithelium; however, the location of the stem or progenitor population for Merkel cells remains unknown. Here, we have identified a previously undescribed population of epidermal progenitors that reside in the touch domes of hairy skin, termed touch dome progenitor cells (TDPCs). TDPCs are epithelial keratinocytes and are distinguished by their unique co-expression of α6 integrin, Sca1 and CD200 surface proteins. TDPCs exhibit bipotent progenitor behavior as they give rise to both squamous and neuroendocrine epidermal lineages, whereas the remainder of the α6(+) Sca1(+) CD200(-) epidermis does not give rise to Merkel cells. Finally, TDPCs possess a unique transcript profile that appears to be enforced by the juxtaposition of TDPCs with Merkel cells within the touch dome niche.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2976280 | PMC |
http://dx.doi.org/10.1242/dev.055970 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!