Ultrasound strain imaging has been proposed to quantitatively assess myocardial contractility. Cross-correlation-based 2-D speckle tracking (ST) and auto-correlation-based tissue Doppler imaging (TDI) [often called Doppler tissue imaging (DTI)] are competitive ultrasound techniques for this application. Compared with 2-D ST, TDI, as a 1-D method, is sensitive to beam angle and suffers from low strain signal-to-noise ratio because a high pulse repetition frequency is required to avoid aliasing in velocity estimation. In addition, ST and TDI are fundamentally different in the way that physical parameters such as the mechanical strain are derived, resulting in different estimation accuracy and interpretation. In this study, we directly compared the accuracy of TDI and 2-D ST estimates of instantaneous axial normal strain and accumulated axial normal strain using a simulated heart. We then used an isolated rabbit heart model of acute ischemia produced by left descending anterior artery ligation to evaluate the performance of the two methods in detecting abnormal motion. Results showed that instantaneous axial normal strains derived using TDI (0.36% error) were less accurate with larger variance than those derived from 2-D ST (0.08% error) given the same spatial resolution. In addition to poorer accuracy, accumulated axial normal strain estimates derived using TDI suffered from bias, because the accumulation method for TDI cannot trace along the actual tissue displacement path. Finally, we demonstrated the advantage 2-D ST has over TDI to reduce dependency on beam angle for lesion detection by estimating strains based on the principal stretches and their corresponding principal axes.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TUFFC.2010.1715DOI Listing

Publication Analysis

Top Keywords

axial normal
16
normal strain
12
2-d speckle
8
speckle tracking
8
tissue doppler
8
doppler imaging
8
isolated rabbit
8
rabbit heart
8
heart model
8
tdi
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!