The inherited neurodegenerative disease Friedreich's ataxia (FRDA) is caused by GAA⋅TTC triplet repeat hyperexpansions within the first intron of the FXN gene, encoding the mitochondrial protein frataxin. Long GAA⋅TTC repeats cause heterochromatin-mediated gene silencing and loss of frataxin in affected individuals. We report the derivation of induced pluripotent stem cells (iPSCs) from FRDA patient fibroblasts by transcription factor reprogramming. FXN gene repression is maintained in the iPSCs, as are the global gene expression signatures reflecting the human disease. GAA⋅TTC repeats uniquely in FXN in the iPSCs exhibit repeat instability similar to patient families, where they expand and/or contract with discrete changes in length between generations. The mismatch repair enzyme MSH2, implicated in repeat instability in other triplet repeat diseases, is highly expressed in pluripotent cells and occupies FXN intron 1, and shRNA silencing of MSH2 impedes repeat expansion, providing a possible molecular explanation for repeat expansion in FRDA.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2987635PMC
http://dx.doi.org/10.1016/j.stem.2010.09.014DOI Listing

Publication Analysis

Top Keywords

triplet repeat
12
repeat instability
12
friedreich's ataxia
8
induced pluripotent
8
pluripotent stem
8
stem cells
8
gaa⋅ttc triplet
8
fxn gene
8
gaa⋅ttc repeats
8
repeat expansion
8

Similar Publications

Background: Spinocerebellar ataxia type 3 (SCA3) is a hereditary disease caused by abnormally expanded CAG repeats in the ATXN3 gene. The study aimed to identify potential biomarkers for assessing therapeutic efficacy by investigating the associations between expanded CAG repeat size, brain and spinal cord volume loss, and motor functions in patients with SCA3.

Methods: In this prospective, cross-observational study, we analyzed 3D T1-weighted MRIs from 92 patients with SCA3 and 42 healthy controls using voxel-based morphometry and region of interest approaches.

View Article and Find Full Text PDF

Piper longum, commonly known as long pepper, is highly valued for its bioactive alkaloid piperine, which has diverse pharmaceutical and culinary applications. In this study, we used high-throughput sequencing and de novo transcriptome assembly to analyze the transcriptomes of P. longum leaves, roots, and spikes.

View Article and Find Full Text PDF

Huntington's disease, one of more than 50 inherited repeat expansion disorders, is a dominantly inherited neurodegenerative disease caused by a CAG expansion in HTT. Inherited CAG repeat length is the primary determinant of age of onset, with human genetic studies underscoring that the disease is driven by the CAG length-dependent propensity of the repeat to further expand in the brain. Routes to slowing somatic CAG expansion, therefore, hold promise for disease-modifying therapies.

View Article and Find Full Text PDF

Novel p.Arg534del Mutation and MTHFR C667T Polymorphism in Fragile X Syndrome (FXS) With Autism Spectrum Phenotype: A Case Report.

Case Rep Genet

January 2025

Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California, 2825 50th Street, Davis, Sacramento 95817, California, USA.

Fragile X syndrome (FXS) presents with autism spectrum disorder (ASD), intellectual disability, developmental delay, seizures, hypotonia during infancy, joint laxity, behavioral issues, and characteristic facial features. The predominant mechanism is due to CGG trinucleotide repeat expansion of more than 200 repeats in the 5'UTR (untranslated region) of (Fragile X Messenger Ribonucleoprotein 1) causing promoter methylation and transcriptional silencing. However, not all patients presenting with the characteristic phenotype and point/frameshift mutations with deletions in have been described in the literature.

View Article and Find Full Text PDF

Flipons and the origin of the genetic code.

Biol Lett

January 2025

Discovery, InsideOutBio , Charlestown, MA, USA.

This paper is focused on the origins of the contemporary genetic code. A novel explanation is proposed for how the mapping of nucleotides in DNA to amino acids in proteins arose that derives from repeat nucleotide sequences able to form alternative nucleic acid structures (ANS), such as the unusual left-handed Z-DNA, triplex, G-quadruplex and I-motif conformations. The scheme identifies sequence-specific contacts that map ANS repeats to dipeptide polymers (DPS).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!