An improved spinning lens test to determine the stiffness of the human lens.

Exp Eye Res

Department of Engineering Science, University of Oxford, Parks Road, Oxford, OX1 3PJ, UK.

Published: January 2011

It is widely accepted that age-related changes in lens stiffness are significant for the development of presbyopia. However, precise details on the relative importance of age-related changes in the stiffness of the lens, in comparison with other potential mechanisms for the development of presbyopia, have not yet been established. One contributing factor to this uncertainty is the paucity and variability of experimental data on lens stiffness. The available published data generally indicate that stiffness varies spatially within the lens and that stiffness parameters tend to increase with age. However, considerable differences exist between these published data sets, both qualitatively and quantitatively. The current paper describes new and improved methods, based on the spinning lens approach pioneered by Fisher, R.F. (1971) 'The elastic constants of the human lens', Journal of Physiology, 212, 147-180, to make measurements on the stiffness of the human lens. These new procedures have been developed in an attempt to eliminate, or at least substantially reduce, various systematic errors in Fisher's original experiment. An improved test rig has been constructed and a new modelling procedure for determining lens stiffness parameters from observations made during the test has been devised. The experiment involves mounting a human lens on a vertical rotor so that the lens spins on its optical axis (typically at 1000 rpm). An automatic imaging system is used to capture the outline of the lens, while it is rotating, at pre-determined angular orientations. These images are used to quantify the deformations developed in the lens as a consequence of the centripetal forces induced by the rotation. Lens stiffness is inferred using axisymmetric finite element inverse analysis in which a nearly-incompressible neo-Hookean constitutive model is used to represent the mechanics of the lens. A numerical optimisation procedure is used to determine the stiffness parameters that provide a best fit between the finite element model and the experimental data. Sample results are presented for a human lens of age 33 years.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3384005PMC
http://dx.doi.org/10.1016/j.exer.2010.10.010DOI Listing

Publication Analysis

Top Keywords

lens stiffness
20
lens
16
human lens
16
stiffness parameters
12
stiffness
10
spinning lens
8
determine stiffness
8
stiffness human
8
age-related changes
8
development presbyopia
8

Similar Publications

Short-term orthokeratology effects on corneal biomechanics with a focus on SPA1 and stress-strain index (SSI) parameters in pediatric myopia.

Arq Bras Oftalmol

January 2025

Department of Ophthalmology, Guangdong Eye Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences. No. 106 Zhongshan Er Road, Guangzhou 510080, China.

Purpose: Although the orthokeratology effects on corneal biomechanics have been proven with clinical trials, reports of stiffness parameter change are scarce. This study investigated the short-term orthokeratology effects in pediatric myopia and compared stiffness parameter changes to those published in recent clinical investigations. This prospective study aimed to investigate corneal biomechanics changes induced by short-term overnight orthokeratology treatment, focusing on stiffness parameter at A1 and stress-strain index.

View Article and Find Full Text PDF

The tumor microenvironment functions as a dynamic and intricate ecosystem, comprising a diverse array of cellular and non-cellular components that precisely orchestrate pivotal tumor behaviors, including invasion, metastasis, and drug resistance. While unraveling the intricate interplay between the tumor microenvironment and tumor behaviors represents a tremendous challenge, recent research illuminates a crucial biological phenomenon known as cellular mechanotransduction. Within the microenvironment, mechanical cues like tensile stress, shear stress, and stiffness play a pivotal role by activating mechanosensitive effectors such as PIEZO proteins, integrins, and Yes-associated protein.

View Article and Find Full Text PDF

Background And Aims: Around 750,000 patients per year will be cured of HCV infection until 2030. Those with compensated advanced chronic liver disease remain at risk for hepatic decompensation and de novo HCC. Algorithms have been developed to stratify risk early after cure; however, data on long-term outcomes and the prognostic utility of these risk stratification algorithms at later time points are lacking.

View Article and Find Full Text PDF

Purpose: To elucidate the mechanical properties of the bovine lens cortical membrane (CM), the nuclear membrane (NM) containing cholesterol bilayer domains (CBDs), and whole bovine lenses.

Methods: The total lipids (lipids plus cholesterol) from the cortex and nucleus of a single bovine lens were isolated using the monophasic methanol extraction method. Supported CMs and NMs were prepared from total lipids extracted from the cortex and nucleus, respectively, using a rapid solvent exchange method and probe-tip sonication, followed by the fusion of unilamellar vesicles on a flat, freshly cleaved mica surface.

View Article and Find Full Text PDF

Portal hypertension: recommendations for diagnosis and treatment. Consensus document sponsored by the Spanish Association for the Study of the Liver (AEEH) and the Biomedical Research Network Centre for Liver and Digestive Diseases (CIBERehd).

Gastroenterol Hepatol

January 2025

Servicio de Hepatología, Hospital Clínic, Institut de Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universidad de Barcelona, Centro de Investigación Biomédica en Red en Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, España. Electronic address:

Portal hypertension is a hemodynamic abnormality that complicates the course of cirrhosis, as well as other diseases that affect the portal venous circulation. The development of portal hypertension compromises prognosis, especially when it rises above a certain threshold known as clinically significant portal hypertension (CSPH). In the consensus conference on Portal Hypertension promoted by the Spanish Association for the Study of the Liver and the Hepatic and Digestive diseases area of the Biomedical Research Networking Center (CIBERehd), different aspects of the diagnosis and treatment of portal hypertension caused by cirrhosis or other diseases were discussed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!