Dietary etiologies or treatments for complex mental disorder are highly controversial in psychiatry. Nevertheless, diet affects brain chemistry (particularly serotonin), and can reduce abnormal behavior in humans and animals. We formulated a diet that elevated brain serotonin and tested whether it would reduce hair pulling in a mouse model of trichotillomania. In a double-blind crossover trial, dietary elevation of brain serotonin unexpectedly increased hair pulling (P = 0.0006) and induced ulcerative dermatitis (UD; P = 0.001). The causative agent for UD is unknown. Therefore, we fed the treatment diet to a second group of mice to test whether UD is behavioral in origin. The diet increased scratching behavior (P < 0.0001). However, high scratching behavior (P = 0.027) and low barbering (P = 0.040) prior to treatment predicted the development of UD. Thus diet can trigger the onset of a complex disorder in the absence of an underlying metabolic deficit. Furthermore, we propose UD as model of compulsive skin-picking.

Download full-text PDF

Source
http://dx.doi.org/10.1179/147683010X12611460764688DOI Listing

Publication Analysis

Top Keywords

brain serotonin
8
hair pulling
8
scratching behavior
8
diet
5
nutritional up-regulation
4
serotonin
4
up-regulation serotonin
4
serotonin paradoxically
4
paradoxically induces
4
induces compulsive
4

Similar Publications

Depression is one of the most disabling mental disorders worldwide and characterized by symptoms including worthlessness, anhedonia, sleep, and appetite disturbances. Recently, studies have suggested that tryptophan (Trp) metabolism plays a key role in depressed mood through serotonin and kynurenine pathway involving enzyme tryptophan 5-monooxygenase (TPH) and indoleamine-2,3-dioxygenase (IDO) respectively. Moreover, during neuroinflammation, IDO is activated by proinflammatory cytokines and affects neurogenesis, cognition, disturbed hypothalamic-pituitary-adrenal (HPA) axis, and gut homeostasis by altering the gut bacteria and its metabolites like Trp derivatives.

View Article and Find Full Text PDF

Caffeine consumption is regarded as a widespread phenomenon, and its usage has continued to increase. In addition, the growing usage of antidepressants worldwide and increase in mental health disorders were shown in recent statistical analyses conducted by the World Health Organisation. The coadministration of caffeine and antidepressants remains a concern due to potential interactions that can alter a patient's response to therapy.

View Article and Find Full Text PDF

Trace amine signaling in zebrafish models: CNS pharmacology, behavioral regulation and translational relevance.

Eur J Pharmacol

January 2025

Institute of Translational Biomedicine (ITBM), St. Petersburg State University, St. Petersburg, Russia; Department of Biosciences and Bioinformatics, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, China; Suzhou Municipal Key Laboratory of Neurobiology and Cell Signaling, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, China. Electronic address:

Tyramine, β-phenylethylamine, octopamine and other trace amines are endogenous substances recently recognized as important novel neurotransmitters in the brain. Trace amines act via multiple selective trace amine-associated receptors (TAARs) of the G protein-coupled receptor family. TAARs are expressed in various brain regions and modulate neurotransmission, neuronal excitability, adult neurogenesis, cognition, mood, locomotor activity and olfaction.

View Article and Find Full Text PDF

Background: Hippocampal volume increases throughout early development and is an important indicator of cognitive abilities and mental health. However, hippocampal development is highly vulnerable to exposures during development, as seen by smaller hippocampal volume and differential epigenetic programming in genes implicated in mental health. However, few studies have investigated hippocampal volume in relation to the peripheral epigenome across development, and even less is known about potential genetic moderators.

View Article and Find Full Text PDF

5-Hydroxyindoleacetic acid (5-HIAA), a vital metabolite of serotonin (5-HT), is crucial for understanding metabolic pathways and is implicated in various mental disorders. In situ monitoring of 5-HIAA is challenging due to the lack of affinity ligands and issues with electrochemical fouling. We present an advanced sensing approach that integrates customizable molecular imprinting polymer (MIP) with self-driven galvanic redox potentiometry (GRP) for precise, real-time in vivo monitoring of 5-HIAA.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!