Joint QTL analysis of three connected F2-crosses in pigs.

Genet Sel Evol

Institute of Animal Husbandry and Breeding, University of Hohenheim, D-70599 Stuttgart, Germany.

Published: November 2010

Background: Numerous QTL mapping resource populations are available in livestock species. Usually they are analysed separately, although the same founder breeds are often used. The aim of the present study was to show the strength of analysing F2-crosses jointly in pig breeding when the founder breeds of several F2-crosses are the same.

Methods: Three porcine F2-crosses were generated from three founder breeds (i.e. Meishan, Pietrain and wild boar). The crosses were analysed jointly, using a flexible genetic model that estimated an additive QTL effect for each founder breed allele and a dominant QTL effect for each combination of alleles derived from different founder breeds. The following traits were analysed: daily gain, back fat and carcass weight. Substantial phenotypic variation was observed within and between crosses. Multiple QTL, multiple QTL alleles and imprinting effects were considered. The results were compared to those obtained when each cross was analysed separately.

Results: For daily gain, back fat and carcass weight, 13, 15 and 16 QTL were found, respectively. For back fat, daily gain and carcass weight, respectively three, four, and five loci showed significant imprinting effects. The number of QTL mapped was much higher than when each design was analysed individually. Additionally, the test statistic plot along the chromosomes was much sharper leading to smaller QTL confidence intervals. In many cases, three QTL alleles were observed.

Conclusions: The present study showed the strength of analysing three connected F2-crosses jointly. In this experiment, statistical power was high because of the reduced number of estimated parameters and the large number of individuals. The applied model was flexible and was computationally fast.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2988712PMC
http://dx.doi.org/10.1186/1297-9686-42-40DOI Listing

Publication Analysis

Top Keywords

founder breeds
16
daily gain
12
carcass weight
12
qtl
9
three connected
8
connected f2-crosses
8
study strength
8
strength analysing
8
f2-crosses jointly
8
gain fat
8

Similar Publications

Translocating individuals from multiple source populations is one way to bolster genetic variation and avoid inbreeding in newly established populations. However, mixing isolated populations, especially from islands, can potentially lead to outbreeding depression and/or assortative mating, which may limit interbreeding between source populations. Here, we investigated genetic consequences of mixing individuals from two island populations of the dibbler () in an island translocation.

View Article and Find Full Text PDF

The black bream () is an economically important species widely distributed in China, with its geographic populations potentially having undergone differentiations and local adaptations. In this study, we presented a chromosome-level genome assembly of this species and investigated genetic differentiations of its populations that are allopatric (the northern one) and sympatric (the Poyang Lake) to its kin species, the blunt-snout bream (), using whole genome resequencing analysis. The results showed that the genome size of black bream was 1.

View Article and Find Full Text PDF

Generation and propagation of high fecundity gene edited fine wool sheep by CRISPR/Cas9.

Sci Rep

January 2025

Key Laboratory of Genetics, Breeding and Reproduction of Grass-Feeding Livestock, Key Laboratory of Animal Biotechnology of Xinjiang, Ministry of Agriculture(MOA), Urumqi, 830026, Xinjiang, China.

CRISPR/Cas9 technology has been widely utilized to enhance productive performance, increase disease resistance and generate medical models in livestock. The FecB allele in sheep is a mutation in the BMPRIB gene, recognized as the first major gene responsible for the high fecundity trait in sheep, leading to an increased ovulation rate in ewe. In this study, we employed CRISPR/Cas9-mediated homologous-directed repair (HDR) to introduce a defined point mutation (c.

View Article and Find Full Text PDF

Microalgae offer a compelling platform for the production of commodity products, due to their superior photosynthetic efficiency, adaptability to nonarable lands and nonpotable water, and their capacity to produce a versatile array of bioproducts, including biofuels and biomaterials. However, the scalability of microalgae as a bioresource has been hindered by challenges such as costly biomass production related to vulnerability to pond crashes during large-scale cultivation. This study presents a pipeline for the genetic engineering and pilot-scale production of biodiesel and thermoplastic polyurethane precursors in the extremophile species .

View Article and Find Full Text PDF

Misfolding of the cellular PrP (PrP) protein causes prion disease, leading to neurodegenerative disorders in numerous mammalian species, including goats. A lack of PrP induces complete resistance to prion disease. The aim of this work was to engineer Alpine goats carrying knockout (KO) alleles of PRNP, the PrP-encoding gene, using CRISPR/Cas9-ribonucleoproteins and single-stranded donor oligonucleotides.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!