Epithelial tissues are a key metazoan cell type, providing a basic structural unit for the construction of diverse animal body plans. Historically, an epithelial grade of organization was considered to be restricted to the Eumetazoa, with the majority of cell layers described for Porifera lacking any of the conserved ultrastructural characteristics of epithelia. Now with the use of genomic information from the demosponge, Amphimedon queenslandica, we identify orthologs of bilaterian genes that determine epithelial cell polarity or encode components of specialized epithelial junctions and extracellular matrix structures. Amphimedon possesses orthologs of most bilaterian epithelial polarity and adherens junction genes but few or no tight junction, septate junction, or basal lamina genes. To place this information in an evolutionary context, we extended these analyses to the completed genomes of various fungi, the choanoflagellate, Monosiga brevicollis, the placozoan, Trichoplax adhaerens, and the cnidarian, Nematostella vectensis. The results indicate that the majority of "epithelial" genes originated in metazoan or eumetazoan lineages, with only two genes, Par-1 and Discs large, antedating the choanoflagellate-metazoan split. We further explored the mechanism of evolution for each of these genes by tracking the origin of constituent domains and domain combinations. In general, domain configurations found in contemporary bilaterians are inferred to have evolved early in metazoan evolution and are identical or similar to those present in representatives of modern cnidarians, placozoans, and demosponges.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1525-142X.2010.00445.xDOI Listing

Publication Analysis

Top Keywords

orthologs bilaterian
8
genes
6
epithelial
5
origin animal
4
animal epithelia
4
epithelia insights
4
insights sponge
4
sponge genome
4
genome epithelial
4
epithelial tissues
4

Similar Publications

Groups of orthologous genes are commonly found together on the same chromosome over vast evolutionary distances. This extensive physical gene linkage, known as macrosynteny, is seen between bilaterian phyla as divergent as Chordata, Echinodermata, Mollusca, and Nemertea. Here, we report a unique pattern of genome evolution in Bryozoa, an understudied phylum of colonial invertebrates.

View Article and Find Full Text PDF

Global analysis of neuropeptide receptor conservation across phylum Nematoda.

BMC Biol

October 2024

Animal Physiology and Neurobiology, Department of Biology, University of Leuven (KU Leuven), Naamsestraat 59, 3000, Leuven, Belgium.

Background: The phylum Nematoda is incredibly diverse and includes many parasites of humans, livestock, and plants. Peptide-activated G protein-coupled receptors (GPCRs) are central to the regulation of physiology and numerous behaviors, and they represent appealing pharmacological targets for parasite control. Efforts are ongoing to characterize the functions and define the ligands of nematode GPCRs, with already most peptide GPCRs known or predicted in Caenorhabditis elegans.

View Article and Find Full Text PDF

The complex morphology of neurons requires precise control of their microtubule cytoskeleton. This is achieved by microtubule-associated proteins (MAPs) that regulate the assembly and stability of microtubules, and transport of molecules and vesicles along them. While many of these MAPs function in all cells, some are specifically or predominantly involved in regulating microtubules in neurons.

View Article and Find Full Text PDF

Deuterostomes are a monophyletic group of animals that includes Hemichordata, Echinodermata (together called Ambulacraria), and Chordata. The diversity of deuterostome body plans has made it challenging to reconstruct their ancestral condition and to decipher the genetic changes that drove the diversification of deuterostome lineages. Here, we generate chromosome-level genome assemblies of 2 hemichordate species, Ptychodera flava and Schizocardium californicum, and use comparative genomic approaches to infer the chromosomal architecture of the deuterostome common ancestor and delineate lineage-specific chromosomal modifications.

View Article and Find Full Text PDF

Background: Cadherins are calcium-dependent transmembrane cell-cell adhesion proteins that are essential for metazoan development. They consist of three subfamilies: classical cadherins, which bind catenin, protocadherins, which contain 6-7 calcium-binding repeat domains, and atypical cadherins. Their functions include forming adherens junctions, establishing planar cell polarity (PCP), and regulating cell shape, proliferation, and migration.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!