Functionalized silica nanoparticles (NP) were obtained by esterification of the silanol groups of fumed silica nanoparticles with benzyl alcohol. These particles were characterized by Fourier transform infrared spectroscopy, (13)C and (29)Si NMR spectroscopy, thermogravimetry, total organic carbon, Brunauer-Emmett-Teller analysis, UV-visible spectroscopy, and transmission electron microscopy. NP suspensions in water/acetonitrile mixtures were used as quenchers of benzophenone (BP) phosphorescence in time-resolved experiments at the excitation wavelength of 266 nm. The phosphorescence signals obtained in the presence of the nanoparticles were fitted to biexponential decays. Both decays were accelerated in the presence of increasing amounts of NP. A model, including the reversible adsorption of BP on the NP, which was supported by computer simulations accounts for the observed results. Laser flash-photolysis experiments with excitation at 266 nm of NP suspensions in water/acetonitrile in the presence of BP generated benzyl radicals that were attached to the silica surface. These radicals were detected at their absorption maxima (320 nm) by transient optical techniques.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1751-1097.2010.00810.x | DOI Listing |
Sci Rep
December 2024
Department of Petroleum Engineering, Shahid Bahonar University of Kerman, Kerman, Iran.
Because a significant portion of oil remains in carbonate reservoirs, efficient techniques are essential to increase oil recovery from carbonate reservoirs. Wettability alteration is crucial for enhanced oil recovery (EOR) from oil-wet reservoirs. This study investigates the impact of different substances on the wettability of dolomite and calcite rocks.
View Article and Find Full Text PDFFront Bioeng Biotechnol
December 2024
Department of Medical Ultrasonics, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
Introduction: Effective postoperative pain management remains a significant challenge due to the severe side effects of opioids and the limitations of existing analgesic delivery systems. Inflammation plays a critical role in pain exacerbation, highlighting the need for therapies that combine analgesic effects with intrinsic anti-inflammatory properties.
Methods: Herein, we develop an intrinsic anti-inflammatory nanomedicine designed to enhance pain management by integrating controlled anesthetic release with inherent anti-inflammatory activity.
Drug Discov Today
December 2024
Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, 3200 South University Drive, Ft. Lauderdale, FL 33328-2018, USA. Electronic address:
Magnetic polymeric nanocomposites are a modern class of materials in which magnetic nanoparticles are embedded in a polymeric matrix. This combination of magnetic responsiveness and tuneable properties bestows versatility on this class of polymer nanocomposite material, which has potentially broad applications in drug delivery, imaging, environmental remediation and beyond. This review covers the uses of magnetic polymeric nanocomposites in drug delivery, discussing magnetic micelles, magnetic liposomes, magnetic hydrogels, magnetic sponges, magnetic mesoporous silica nanoparticles, magnetic microrobots, magnetic elastomers and magnetic scaffolds.
View Article and Find Full Text PDFChem Biomed Imaging
December 2024
Experimental Solid State Physics Group, Department of Physics, Imperial College, Exhibition Road, SW72AZ London, U.K.
Mesoporous silica nanoparticles (MSNPs) are promising nanomedicine vehicles due to their biocompatibility and ability to carry large cargoes. It is critical in nanomedicine development to be able to map their uptake in cells, including distinguishing surface associated MSNPs from those that are embedded or internalized into cells. Conventional nanoscale imaging techniques, such as electron and fluorescence microscopies, however, generally require the use of stains and labels to image both the biological material and the nanomedicines, which can interfere with the biological processes at play.
View Article and Find Full Text PDFInt J Nanomedicine
December 2024
Department of Orthodontics, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction & Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, People's Republic of China.
Silica nanoparticles (SiNPs) are widely used in biomedical fields, such as drug delivery, disease diagnosis, and molecular imaging. An increasing number of consumer products containing SiNPs are being used without supervision, and the toxicity of SiNPs to the human body is becoming a major problem. SiNPs contact the human body in various ways and cause damage to the structure and function of genetic material, potentially leading to carcinogenesis, teratogenicity and infertility.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!