Scaling down the dimensions of thermoacoustic sound sources (thermophones) improves efficiency by means of reducing speaker heat capacity. Recent experiments with nanoscale thermophones have revealed properties which are not fully understood theoretically. We develop a Green's function formalism which quantitatively explains some observed discrepancies, e.g., the effect of a heat-absorbing substrate in the proximity of the sound source. We also find a generic ultimate limit for thermophone efficiency. We verify the theory with experiments and finite difference method simulations which deal with thermoacoustically operated suspended arrays of nanowires. The efficiency of our devices is measured to be 1 order of magnitude below the ultimate bound. At low frequencies this mainly results from the presence of a substrate. At high frequencies, on the other hand, the efficiency is limited by the heat capacity of the nanowires. Measured sound pressure level and efficiency are in good agreement with simulations. We discuss the feasibility of reaching the ultimate limit in practice.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/nl1031869 | DOI Listing |
J Dent Sci
January 2025
Endodontic Department, Changzhou Stomatological Hospital, Changzhou, China.
Background/purpose: Heat stress is essential for improving the efficacy of mesenchymal stem cell (MSC)-based regeneration medicine. However, it is still unclear whether and how heat stress influences the differentiation of stem cells from apical papilla (SCAPs). This research aimed to explore the potential mechanism of glucose-regulated protein 78 (GRP78) in regulating differentiation under heat stress in SCAPs.
View Article and Find Full Text PDFMetal-organic framework materials exhibit significant potential for diverse applications in gas adsorption and separation. We have studied the performance changes of Cu-BTC, Cu-MBTC and Cu-EBTC under different water-containing conditions. GCMC studies shows that, compared with Cu-BTC, the water absorption properties of Cu-MBTC and Cu-EBTC have a certain degree of decline, which is consistent with the experimental results.
View Article and Find Full Text PDFAm J Bot
January 2025
Departamento de Biología, Universidad Nacional de Colombia, sede Bogotá, Colombia.
Premise: The warmer and drier atmospheric conditions of urban environments challenge plant performance to different extents based on a species' ability to acclimate to the conditions. We evaluated the influence of species origin and thermal niche on the acclimation of leaf traits and shifts in the occupation of the functional trait space of 10 tree species growing in two environmentally contrasting sites in Bogotá, Colombia.
Methods: We measured six leaf traits per species in both sites and used generalized linear models to evaluate the influence of origin and thermal niche on acclimation of leaf traits and t-tests to analyze shifts in the occupation of the functional trait space.
ACS Appl Mater Interfaces
January 2025
College of Physics and Energy, Fujian Provincial Solar Energy Conversion and Energy Storage Engineering Technology Research Center, Fujian Normal University, Fuzhou 350117, China.
This study proposes an efficient, cost-effective, and industrially scalable electrode modulation strategy, which involves directly adding a small amount of high thermal and high conductance TiN and well interface compatible WO to NaNiFeMnO (NaNFMO-TW) cathode slurry, to effectively reduce electrode polarization and interface side reactions, reduce the Ohmic heat and polarization heat of the battery, and ultimately to significantly improve the sodium-ion storage and thermal safety performance of the battery. At room temperature (RT) and 1C rate, the modified NaNFMO-TW electrode exhibits a reversible capacity of ∼95 mAh g after 300 cycles, with a capacity retention rate of 82.6%, being higher than the 50.
View Article and Find Full Text PDFNano Lett
January 2025
Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, P. R. China.
Along with the rapid development of the digital economy and artificial intelligence, heat sinks available for immersion phase-change liquid cooling (IPCLC) of chips are facing huge challenges. Here, we design a high-performance IPCLC heat sink based on a copper microgroove/nanocone (MGNC) composite structure. Maximal heat fluxes () of the MGNC structure, microgroove structure, and flat copper reach 112.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!