Avian somitogenesis: translating time and space into pattern.

Adv Exp Med Biol

Department of Molecular Embryology, Institute for Anatomy and Cell Biology, Albertstrasse 23, 79104 Freiburg, Germany.

Published: December 2010

Vertebrates have a metameric bodyplan that is based on the presence of paired somites. Somites develop from the segmental plate in a cranio-caudal sequence. At the same time, new material is added from Hensen's node, the primitive streak and the tailbud. In this way, the material residing in the segmental plate remains constant and comprises 12 prospective somites on each side. Prospective segment borders are not yet determined in the caudal segmental plate. Prior to segmentation, the cranial segmental plate undergoes epithelialization, which is controlled by signals from the neural tube and ectoderm. The bHLH transcription factor Paraxis is critically involved in this process. Formation of a new somite from the cranial end of the segmental plate is a highly controlled process involving complex cell movements in relation to each other. Hox genes specify regional identity of the somites and their derivatives. In the chicken a transposition of thoracic into cervical vertebrae has occurred as compared to the mouse. Transcription factors of the bHLH and homeodomain type also specify the cranio-caudal polarity and that of particular cell groups within the somites. According to segmentation models, somitogenesis is under the control of a "segmentation clock" in combination with a morphogen gradient. This hypothesis has recently found support from molecular data, especially the cycling expression of genes such as cHairy1 and Lunatic Fringe, which depend on the Notch/Delta pathway of signal transduction. FGF8 has been described to be distributed along a cranio-caudal gradient. The first oscillating gene described shown to be independent of Notch is Axin2, encoding a negative regulator of the canonical Wnt pathway and a target of Wnt3a. Wnt3a and Axin2 show a similar distribution as FGF8 with high levels in the tailbud. The chick embryo has recently become accessible to molecular approaches such as overexpression by electroporation and RNA interference which can be expected to help elucidating some of the still open questions concerning somitogenesis.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-0-387-09606-3_2DOI Listing

Publication Analysis

Top Keywords

segmental plate
20
cranial segmental
8
somites
5
segmental
5
plate
5
avian somitogenesis
4
somitogenesis translating
4
translating time
4
time space
4
space pattern
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!