Three types of multilayer films made from poly(L-lysine)/hyaluronan, chitosan/hyaluronan, and poly(allylamine hydrochloride)/poly(L-glutamic acid), were used to investigate the interplay between film mechano-chemical properties and cell adhesion. We showed that C2C12 myoblast adhesion and proliferation depended on the extent of film cross-linking for all films whatever their internal chemistry. Cell spreading areas were found to correlate with the film's stiffness and to be distributed over a unique curve. Immuno-staining of the cytoskeletal components revealed the formation of F-actin stress fibers and vinculin plaques only on stiff films. Finally, we compared our results with previous studies performed on polyacrylamide and PDMS gels, two recognized materials for mechano-sensitivity studies. We found that the effect of substrate stiffness on cell spreading is material-dependent.

Download full-text PDF

Source
http://dx.doi.org/10.1002/mabi.201000301DOI Listing

Publication Analysis

Top Keywords

mechano-sensitivity studies
8
cell spreading
8
polyelectrolyte multilayer
4
multilayer nanofilms
4
nanofilms thin
4
thin materials
4
cell
4
materials cell
4
cell mechano-sensitivity
4
studies three
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!