Bacterial infection of biomedical devices is still a major barrier to their use. This is compounded by increasing antibiotic resistance. Here, the specific covalent attachment of a series of dihydropyrrol-2-one (DHP), analogues of bacterial quorum sensing inhibitors, to surfaces via a Michael-type addition reaction is described. Differences in efficiency of attachment related to the substituent groups were found by X-ray photoelectron spectroscopy. The physical characteristics of the surfaces were further explored by atomic force microscopy and contact angle measurements. The ability of these coatings to prevent the formation of a biofilm by Pseudomonas aeruginosa and Staphylococcus aureus was examined using confocal laser scanning microscopy and image analysis. The DHP-treated surfaces showed significant reductions in bacterial adhesion without increased killing for both strains of bacteria (p < 0.001). 5-Methylene-1-(prop-2-enoyl)-4-phenyl-dihydropyrrol-2-one was identified as having broad spectrum activity and consequently represents an excellent candidate for the development of novel surfaces for the prevention of biomedical device infections.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/08927014.2010.531463 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!