Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Objective: The Sensormedics 3100A and 3100B are widely used to provide high-frequency oscillatory ventilation in clinical practice. Infants and children <35 kg are typically oscillated with the 3100A and >35 kg with the 3100B. This study compares the effect of ventilator and patient parameters on delivered tidal volume during high-frequency oscillatory ventilation of a test lung with these devices.
Design: Laboratory-based study.
Subjects: Test lung and Sensormedics 3100A and 3100B high-frequency oscillators.
Interventions: A previously validated hot-wire flowmeter (Florian) was placed in series with either a 3100A (n = 3) or 3100B (n = 3) ventilator and a Michigan test lung. Tidal volumes were measured over a range of mean airway pressure, inspiratory:expiratory ratio, frequency, pressure amplitude, and endotracheal tube internal diameter.
Measurements And Main Results: The 3100A and 3100B delivered similar tidal volumes across a range of ventilator parameters for an inspiratory:expiratory ratio of 1:1, differing by <10%. However, at an inspiratory:expiratory ratio of 1:2, there was a statistically significant decrease in tidal volume for the 3100B compared with the 3100A at lower frequencies, which was partially mitigated by increasing pressure amplitude. The difference in the generated pressure and flow waveforms may account for the observed tidal volume differences between the high-frequency oscillatory ventilation models. Delivered tidal volume was highly dependent on endotracheal tube size.
Conclusions: Multiple variables contribute to the delivered tidal volume during high-frequency oscillatory ventilation, including ventilator model selection and endotracheal tube size. It is possible that real-time, clinical monitoring of delivered tidal volume during high-frequency oscillatory ventilation would allow better titration and maximize performance of these ventilators in caring for critically ill patients.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/PCC.0b013e3181fe3028 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!