Associations between bladder cancer risk and NAT2 and GSTM1 polymorphisms have emerged as some of the most consistent findings in the genetic epidemiology of common metabolic polymorphisms and cancer, but their interaction with tobacco use, intensity and duration remain unclear. In a New England population-based case-control study of urothelial carcinoma, we collected mouthwash samples from 1088 of 1171 cases (92.9%) and 1282 of 1418 controls (91.2%) for genotype analysis of GSTM1, GSTT1 and NAT2 polymorphisms. Odds ratios and 95% confidence intervals of bladder cancer among New England Bladder Cancer Study subjects with one or two inactive GSTM1 alleles (i.e. the 'null' genotype) were 1.26 (0.85-1.88) and 1.54 (1.05-2.25), respectively (P-trend = 0.008), compared with those with two active copies. GSTT1 inactive alleles were not associated with risk. NAT2 slow acetylation status was not associated with risk among never (1.04; 0.71-1.51), former (0.95; 0.75-1.20) or current smokers (1.33; 0.91-1.95); however, a relationship emerged when smoking intensity was evaluated. Among slow acetylators who ever smoked at least 40 cigarettes/day, risk was elevated among ever (1.82; 1.14-2.91, P-interaction = 0.07) and current heavy smokers (3.16; 1.22-8.19, P-interaction = 0.03) compared with rapid acetylators in each category; but was not observed at lower intensities. In contrast, the effect of GSTM1-null genotype was not greater among smokers, regardless of intensity. Meta-analysis of the NAT2 associations with bladder cancer showed a highly significant relationship. Findings from this large USA population-based study provided evidence that the NAT2 slow acetylation genotype interacts with tobacco smoking as a function of exposure intensity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3026839PMC
http://dx.doi.org/10.1093/carcin/bgq223DOI Listing

Publication Analysis

Top Keywords

bladder cancer
24
nat2 slow
12
slow acetylation
12
smoking intensity
8
cancer risk
8
england bladder
8
cancer study
8
associations bladder
8
risk nat2
8
associated risk
8

Similar Publications

Treatment options for recurrent high-risk non-muscle-invasive bladder cancer (HR NMIBC) and muscle-invasive bladder cancer (MIBC) are limited, highlighting a need for clinically effective, accessible, and better-tolerated alternatives. In this review we examine the clinical development program of TAR-200, a novel targeted releasing system designed to provide sustained intravesical delivery of gemcitabine to address the needs of patients with NMIBC and of those with MIBC. We describe the concept and design of TAR-200 and the clinical development of this gemcitabine intravesical system in the SunRISe portfolio of studies.

View Article and Find Full Text PDF

Comprehensive Genetic Profile of Chinese Muscle-Invasive Bladder Cancer Cohort.

Clin Genitourin Cancer

December 2024

Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China. Electronic address:

Objective: The aim of our study was to characterize the spectrum of mutations in muscle-invasive bladder cancer (MIBC) in the Chinese population, identifying mutational features and exploring potential therapeutic targets.

Methods: We collected samples from 62 Chinese patients with MIBC. For each patient, tumor tissues or blood samples were collected and sequenced by whole exome sequencing.

View Article and Find Full Text PDF

Distinct molecular subtypes of muscle-invasive bladder cancer (MIBC) may show different platinum sensitivities. Currently available data were mostly generated at transcriptome level and have limited comparability to each other. We aimed to determine the platinum sensitivity of molecular subtypes by using the protein expression-based Lund Taxonomy.

View Article and Find Full Text PDF

Unveiling urinary extracellular vesicle mRNA signature for early diagnosis and prognosis of bladder cancer.

Theranostics

January 2025

State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Molecular Recognition and Biosensing, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China.

Bladder cancer (BC) ranks as one of the most prevalent cancers. Its early diagnosis is clinically essential but remains challenging due to the lack of reliable biomarkers. Extracellular vesicles (EVs) carry abundant biological cargoes from parental cells, rendering them as promising cancer biomarkers.

View Article and Find Full Text PDF

Background: Multiple studies suggest a plausible connection between urologic cancers and branched-chain amino acids (BCAAs) breakdown metabolic enzymes. Nevertheless, there is scarce exploration into the variations in circulating BCAAs. In our research, we utilize bidirectional, two-sample Mendelian randomization (MR) analysis to predict the link between BCAAs levels and three distinct types of urological tumors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!