Aureibacter tunicatorum gen. nov., sp. nov., a marine bacterium isolated from a coral reef sea squirt, and description of Flammeovirgaceae fam. nov.

Int J Syst Evol Microbiol

Institute of Molecular and Cellular Biosciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan.

Published: October 2011

Two aerobic, Gram-reaction-negative, golden-yellow pigmented and rod-shaped bacteria, designated strains A5Q-118(T) and A5Q-27, were isolated from an unidentified sea squirt that thrives in the coral reefs off the coast of Okinawa, Japan. Phylogenetic analyses based on the 16S rRNA gene sequence revealed that the novel isolates were affiliated with the family 'Flammeovirgaceae' of the phylum Bacteroidetes. Strains A5Q-118(T) and A5Q-27 shared 100 % sequence similarity with each other and showed <92 % similarity with other cultivated members of the family 'Flammeovirgaceae'. The novel isolates were phenotypically and physiologically different from strains described previously. The DNA G+C content was 35.5-36.2 mol%, MK-7 was the major menaquinone and iso-C(15 : 0) and C(16 : 1)ω5c were the major fatty acids. Based on the results of this polyphasic taxonomic study, it was concluded that strains A5Q-118(T) and A5Q-27 represent a novel species in a new genus of the family 'Flammeovirgaceae', for which the name Aureibacter tunicatorum gen. nov., sp. nov. is proposed. Proposal for designation of the Flammeovirgaceae fam. nov. is also presented. The type strain of Aureibacter tunicatorum is A5Q-118(T) ( = KCTC 23232(T)  = NBRC 107587(T)).

Download full-text PDF

Source
http://dx.doi.org/10.1099/ijs.0.027573-0DOI Listing

Publication Analysis

Top Keywords

sea squirt
8
strains a5q-118t
8
a5q-118t a5q-27
8
aureibacter tunicatorum
4
tunicatorum gen
4
gen nov
4
nov nov
4
nov marine
4
marine bacterium
4
bacterium isolated
4

Similar Publications

Catalytic subunit of DNA polymerase ζ (REV3), involved in translesion-replication is evolutionarily conserved from yeast and plants to higher eukaryotes. However, a large intermediate domain is inserted in REV3 of humans and mice. The domain has "DUF4683" region, which is significantly similar to human neurite extension and migration factor (NEXMIF).

View Article and Find Full Text PDF

Maintenance and breeding of experimental organisms are fundamental to life sciences, but both initial and running costs, and hands-on zootechnical demands can be challenging for many laboratories. Here, we first aimed to further develop a simple protocol for reliable inland culture of tunicate model species of the genus. We cultured both and in controlled experimental conditions, with a focus on dietary variables, and quantified growth and maturation parameters.

View Article and Find Full Text PDF

Novel peptides based on sea squirt as biocide enhancers to mitigate biocorrosion of EH36 steel.

Bioelectrochemistry

January 2025

Institute of Marine Science and Technology, Shandong University, Qingdao, Shandong 266237, China. Electronic address:

Microbiologically influenced corrosion (MIC) affects offshore production activities severely. Although adding biocides is a simple method, it can cause environmental damage over time. Using green biocide enhancers is a viable strategy to reduce the amount of biocides.

View Article and Find Full Text PDF

The notochord is an axial structure required for the development of all chordate embryos, from sea squirts to humans. Over the course of more than half a billion years of chordate evolution, in addition to its structural function, the notochord has acquired increasingly relevant patterning roles for its surrounding tissues. This process has involved the co-option of signaling pathways and the acquisition of novel molecular mechanisms responsible for the precise timing and modalities of their deployment.

View Article and Find Full Text PDF

Involvement of Metalloproteases in the Fertilization of the Ascidian .

Biomolecules

November 2024

Department of Applied Life Sciences, Faculty of Agriculture, Shizuoka University, Shizuoka 422-8529, Japan.

We previously reported that five astacin-like metalloproteases with thrombospondin type-1 repeats (Tasts) located on the sperm surface are a promising candidate as the protease involved in sperm penetration of the vitelline coat (VC) during fertilization of the ascidian type A (Phlebobranchia). However, whether such a protease is involved in the fertilization of other ascidians is unknown. Here, we investigated the effects of four metalloprotease inhibitors on the fertilization of the ascidian (Stolidobranchia).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!