CXCR1 and CXCR2 are novel mechano-sensors mediating laminar shear stress-induced endothelial cell migration.

Cytokine

Institue of Biomedical Engineering, West China School of Preclinical and Forensic Medicine, Sichuan University, China.

Published: January 2011

The migration of endothelial cells (ECs) plays critical roles in vascular physiology and pathology. The receptors CXCR1 and CXCR2, known as G protein-coupled receptors which are essential for migratory response of ECs toward the shear stress-dependent CXCL8 (interleukin-8), are potential mechano-sensors for mechanotransduction of the hemodynamic forces. In present study, the mRNA and protein expression of CXCR1 and CXCR2 in EA.hy926 cells was detected by RT-PCR and Western blot analysis under three conditions of laminar shear stress (5.56, 10.02 and 15.27 dyn/cm(2)) respectively. Using a scratched-wound assay, the effects of CXCR1 and CXCR2 were assessed by the percentage of wound closure while CXCR1 and CXCR2 were functional blocked by the CXCL8 receptor antibodies. The results showed that the mRNA and protein expression of CXCR1 and CXCR2 was both upregulated by 5.56 dyn/cm(2) laminar shear stress, but was both downregulated by 15.27 dyn/cm(2). The wound closure was inhibited significantly while cells were treated with those antibodies in all the conditions. It was suggested that CXCR1 and CXCR2 are involved in mediating the laminar shear stress-induced EC migration. Taken together, these findings indicated that CXCR1 and CXCR2 are novel mechano-sensors mediating laminar shear stress-induced EC migration. Understanding this expanded mechanism of laminar shear stress-induced cell migration will provide novel molecular targets for therapeutic intervention in cancer and cardiovascular diseases.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cyto.2010.09.007DOI Listing

Publication Analysis

Top Keywords

cxcr1 cxcr2
32
laminar shear
24
shear stress-induced
16
mediating laminar
12
cxcr1
8
cxcr2 novel
8
novel mechano-sensors
8
mechano-sensors mediating
8
cell migration
8
mrna protein
8

Similar Publications

CXCR1 Expression in MDA-PCa-2b Cell Upregulates ITM2A to Inhibit Tumor Growth.

Cancers (Basel)

December 2024

Cancer Research Program, Julius L. Chambers Biomedical/Biotechnology Research Institute, North Carolina Central University, Durham, NC 27707, USA.

Background: Chemokines, along with their receptors, exert critical roles in tumor development and progression. In prostate cancer (PCa), interleukin-8 (IL-8/CXCL8) was shown to enhance angiogenesis, proliferation, and metastasis. CXCL8 activates two receptors, CXCR1 and CXCR2.

View Article and Find Full Text PDF

Introduction: Ulcerative colitis (UC) is a chronic inflammatory condition of the intestinal tract in which mucosal healing is a crucial measure of therapeutic efficacy. Quercetin, a flavonoid prevalent in various foods and traditional Chinese medicines, exhibits notable pharmacological properties, including antioxidant and anti-inflammatory activities. Consequently, it warrants investigation to determine its potential therapeutic effects on UC.

View Article and Find Full Text PDF

Background: Relapsed head and neck squamous cell carcinoma (HNSCC) unrelated to HPV infection carries a poor prognosis. Novel approaches are needed to improve the clinical outcome and prolong survival in this patient population which has poor long-term responses to immune checkpoint blockade. This study evaluated the chemokine receptors CXCR1 and CXCR2 as potential novel targets for the treatment of HPV-negative HNSCC.

View Article and Find Full Text PDF

The family of pro-inflammatory and pro-angiogenic chemokines including Interleukin-8 (IL-8, aka CXCL8) and its homologues (CXCL1,2,3,5,6, and 7) exhibit promiscuous binding and activation of several G-protein-coupled receptors (i.e., CXCR2, CXCR1, and the atypical chemokine receptor (ACKR1)).

View Article and Find Full Text PDF

Nutritional and metabolic state in dairy cows are important determinants of the immune response. During the periparturient period, a state of negative energy balance in the cow increases plasma concentrations of fatty acids (FA), which are associated with inflammation. Among immune cells, CD4 T are able to function under high-FA conditions, but the underlying mechanisms regulating these events remain unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!