We discuss, from the perspective of basic science, the physical and biological processes which underlie atherosclerotic (plaque) initiation at the vascular endothelium, identifying the widely separated spatial and temporal scales which participate. We draw on current, related models of vessel wall evolution, paying particular attention to the role of particulate flow (blood is not a continuum fluid), and proceed to propose, then validate all the key components in a multiply-coupled, multi-scale modeling strategy (in qualitative terms only, note). Eventually, this strategy should lead to a quantitative, patient-specific understanding of the coupling between particulate flow and the endothelial state.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.medengphy.2010.09.007DOI Listing

Publication Analysis

Top Keywords

particulate flow
12
multi-scale interaction
4
interaction particulate
4
flow artery
4
artery wall
4
wall discuss
4
discuss perspective
4
perspective basic
4
basic science
4
science physical
4

Similar Publications

This study used Raman and near-infrared (NIR) spectroscopy to monitor small real-time changes in powder blends and tablets in low-dose pharmaceutical formulations. The research aims to enhance process analytical technology (PAT) in pharmaceutical manufacturing, ensuring high-quality and uniform products with applications to produce drugs with narrow therapeutic indices (NTI). The study utilizes Raman and NIR spatially resolved spectroscopy (SRS) techniques to monitor a moderate cohesive material's active pharmaceutical ingredient (API) concentrations during manufacturing.

View Article and Find Full Text PDF

Objective:  Particulate matter 2.5 (PM2.5), an important air pollution particle, has been previously studied for its effects on various normal and cancer tissues.

View Article and Find Full Text PDF

A holistic study on the effects of a rural flood detention basin: Flood peaks, water quality and grass growth.

J Environ Manage

December 2024

School of Biological, Earth and Environmental Sciences, University College Cork, Cork, Ireland; Environmental Research Institute, Ellen Hutchins Building, University College Cork, Cork, Ireland.

Nature-based Solutions (NbS) are widely advocated to have multiple benefits, including in flood risk reduction, water quality improvement and ecosystem health. There are, however, few empirical studies quantifying such multi-functionality. Given the ongoing pressures of flooding and poor water quality within Europe, there is an urgent need for empirical evidence to assess the potential for NbS features to address these issues.

View Article and Find Full Text PDF

A comparative evaluation of commercially available short fiber-reinforced composites.

BMC Oral Health

December 2024

Department of Biomaterials Science and Turku Clinical Biomaterial Center -TCBC, Institute of Dentistry, University of Turku, Turku, Finland.

Background: Short fiber-reinforced composites (SFRCs) are restorative materials for large cavities claimed to effectively resist crack propagation. This study aimed to compare the mechanical properties and physical characteristics of five commercially available SFRCS (Alert, Fibrafill Flow, Fibrafill Dentin, everX Flow, and everX Posterior) against a conventional particulate-filled composite (PFC, Essentia Universal).

Methods: The following characteristics were evaluated in accordance with ISO standards: flexural strength and modulus and fracture toughness.

View Article and Find Full Text PDF

Trace measurement of aerosol chemical composition in workplace atmospheres requires the development of high-throughput aerosol collectors that are compact, hand-portable, and can be operated using personal pumps. We describe the design and characterization of a compact, high flow, Turbulent-mixing Condensation Aerosol-in-Liquid Concentrator (TCALC) that allows direct collection of aerosols as liquid suspensions, for off-line chemical, biological, or microscopy analysis. The TCALC unit, measuring approximately 12 × 16 × 18 cm, operates at an aerosol sample flowrate of up to 10 L min, using rapid mixing of a hot flow saturated with water vapor and a cold aerosol sample flow, thereby promoting condensational growth of aerosol particles.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!