Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Systemic administration of the β(2)-adrenoceptor agonist clenbuterol induces expression of IL-1β and its negative regulators, interleukin-1 receptor antagonist (IL-1ra) and the interleukin-1 type II decoy receptor (IL-1RII) in rat brain. Clenbuterol also increases central expression of the broad spectrum anti-inflammatory cytokine interleukin-10 (IL-10) and its downstream signalling molecule, suppressor of cytokine signalling-3 (SOCS-3). Here we examine the impact of combined treatment with clenbuterol (0.5mg/kg) and the glucocorticoid dexamethasone (1mg/kg) on mRNA expression of IL-1β and the IL-1β-inducible gene iNOS, on IκBα mRNA expression and NFκB activation, and on mRNA expression of the anti-inflammatory molecules IL-1ra, IL-1RII, IL-10 and SOCS-3 in rat cortex, striatum and hippocampus. Dexamethasone inhibited induction of IL-1β and iNOS mRNA expression by clenbuterol in all three brain regions, without altering its ability to induce IL-1ra mRNA expression. In the case of IL-1RII, dexamethasone further augmented clenbuterol-induced IL-1RII mRNA expression in hippocampus and striatum. These data highlight a mechanistic dissociation between the ability of β(2)-adrenoceptor activation to induce expression of IL-1β, and its negative regulators IL-1ra and IL-1RII in the brain. Treatment with either dexamethasone or clenbuterol alone independently induced IκBα mRNA expression, and elicited a concomitant decrease in the DNA binding of NFκB in all three brain regions. In the hippocampus and striatum dexamethasone treatment did not influence the ability of clenbuterol to induce IL-10 mRNA expression. In contrast in the cortex, induction of IL-10 and SOCS-3 mRNA expression by clenbuterol administered in combination with dexamethasone was less than induced by clenbuterol alone. Overall these data indicate that combined treatment with dexamethasone and the β(2)-adrenoceptor agonist clenbuterol elicit complementary anti-inflammatory actions in the CNS. Specifically, dexamethasone inhibits expression of pro-inflammatory cytokines, whereas clenbuterol has the added benefit of promoting expression of anti-inflammatory molecules including IL-1ra, IL-1RII, IL-10 and SOCS-3.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jneuroim.2010.10.001 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!