A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A pilot study to determine whether machine learning methodologies using pre-treatment electroencephalography can predict the symptomatic response to clozapine therapy. | LitMetric

Objective: To investigate whether applying advanced machine learning (ML) methodologies to pre-treatment electroencephalography (EEG) data can predict the response to clozapine therapy in adult subjects suffering from chronic schizophrenia.

Methods: Pre-treatment EEG data are collected in 23+14 schizophrenic adults. Treatment outcome, after at least one year follow-up, is determined using clinical ratings by a trained clinician blind to EEG results. First, a feature selection scheme is employed to select a reduced subset of features extracted from the subjects' EEG that is most statistically relevant to our treatment-response prediction. These features are then entered into a classifier, which is realized in the form of a kernel partial least squares regression method that performs response prediction. Various scales, including the positive and negative syndrome scale (PANSS) are used as treatment-response indicators.

Results: We determined that a set of discriminating EEG features do exist. A low-dimensional representation of the feature space showed significant clustering into clozapine responder and non-responder groups. The minimum level of performance of the proposed prediction methodology, tested over a range of conditions using the leave-one-out cross-validation method using the original 23 subjects, with further testing in an independent sample of 14 subjects, was 85%.

Conclusions: These findings indicate that analysis of pre-treatment EEG data can predict the clinical response to clozapine in treatment resistant schizophrenia.

Significance: If replicated in a larger population, this novel approach to EEG analysis may assist the clinician in determining treatment-efficacy.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.clinph.2010.05.009DOI Listing

Publication Analysis

Top Keywords

response clozapine
12
eeg data
12
machine learning
8
learning methodologies
8
methodologies pre-treatment
8
pre-treatment electroencephalography
8
clozapine therapy
8
data predict
8
pre-treatment eeg
8
eeg
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!