Patch clamp methods for studying calcium channels.

Methods Cell Biol

Membrane Signaling Group Laboratory of Neurobiology, National Institute of Environmental Health Sciences, NIH, Durham, North Carolina, USA.

Published: March 2011

The patch clamp technique, which was introduced by Neher and Sakmann and their colleagues in 1981, has allowed electrophysiologists to record ion channel activity from most mammalian cell types. When well-established precautions are taken to minimize electrical and mechanical fluctuations, current transients as small as 0.5pA and as brief as 0.5ms can be measured reliably in cell-attached patches of plasma membrane with a polished glass pipette when it forms a giga-ohm seal with the membrane. In many cases, this is sufficient to watch individual channel proteins open and close repeatedly in real time on metabolically intact cells. No other technique currently provides a more precise or detailed view of the function and regulation of calcium channel gating. If antibiotics are added to the pipette to permeabilize the membrane underneath to small monovalent cations, thereby allowing the entire cell to be voltage-clamped without disrupting its contents, the integrated activity of all the calcium channels in the surface membrane can be measured.

Download full-text PDF

Source
http://dx.doi.org/10.1016/B978-0-12-374841-6.00007-4DOI Listing

Publication Analysis

Top Keywords

patch clamp
8
calcium channels
8
clamp methods
4
methods studying
4
studying calcium
4
channels patch
4
clamp technique
4
technique introduced
4
introduced neher
4
neher sakmann
4

Similar Publications

Several mutations of the uppermost arginine, R219, in the voltage-sensing sliding helix S4 of cardiac sodium channel Nav1.5 are reported in the ClinVar databases, but the clinical significance of the respective variants is unknown (VUSs). AlphaFold 3 models predicted a significant downshift of S4 in the R219C VUS.

View Article and Find Full Text PDF

Sigma-1 Receptor Modulates CFA-Induced Inflammatory Pain via Sodium Channels in Small DRG Neurons.

Biomolecules

January 2025

Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd., Wuhan 430030, China.

The sigma-1 receptor (Sig-1R) has emerged as a significant target in the realm of pain management and has been the subject of extensive research. Nonetheless, its specific function in inflammatory pain within dorsal root ganglion (DRG) neurons remains inadequately elucidated. This study utilized whole-cell patch clamp techniques, single-cell real-time PCR, and immunohistochemistry to examine the influence of Sig-1R on inflammatory pain induced by complete Freund's adjuvant (CFA) in a rat model.

View Article and Find Full Text PDF

Background: N-methyl-D-aspartate type glutamate receptors (NMDARs) are fundamental to neuronal physiology and pathophysiology. The prefrontal cortex (PFC), a key region for cognitive function, is heavily implicated in neuropsychiatric disorders, positioning the modulation of its glutamatergic neurotransmission as a promising therapeutic target. Our recently published findings indicate that AT receptor activation enhances NMDAR activity in layer V pyramidal neurons of the rat PFC.

View Article and Find Full Text PDF

Chronic Rapamycin Prevents Electrophysiological and Morphological Alterations Produced by Conditional Pten Deletion in Mouse Cortex.

Cells

January 2025

IDDRC, Jane and Terry Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA.

Abnormalities in the mammalian target of the rapamycin (mTOR) pathway have been implicated in numerous developmental brain disorders. While the molecular and histological abnormalities have been described, less is known about alterations in membrane and synaptic excitability with chronic changes in the mTOR pathway. In the present study, we used a conditional mouse model with a deletion of the phosphatase and tensin homologue (Pten, a negative regulator of mTOR) from cortical pyramidal neurons (CPNs).

View Article and Find Full Text PDF

Molecular Mechanisms of Nicergoline from Ergot Fungus in Blocking Human 5-HT3A Receptor.

J Microbiol Biotechnol

November 2024

Department of Biotechnology and Department of Integrative Food, Bioscience and Biotechnology (BK21 FOUR), Chonnam National University, Gwangju 61186, Republic of Korea.

This study investigates the modulatory effects of nicergoline, a major bioactive compound derived from ergot fungus, on the 5-hydroxytryptamine 3A (5-HT3A) receptor. Utilizing a two-electrode voltage-clamp technique, we evaluated the impact of nicergoline on the 5-HT-induced inward current (I) in 5-HT3A receptors. Our findings reveal that nicergoline inhibits I in a reversible and concentration-dependent manner.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!