In order to give further insight on the influence of the aromatic ring nature and the presence of the phosphorus substituent at the piperidone nitrogen atom of E,E-3,5-bis((hetero)arylidene)piperid-4-ones on their antitumor properties, a series of phosphorus substituted E,E-3,5-bis(pyridinylmethylene)piperid-4-ones bearing either 3-pyridine or 4-pyridine rings was obtained. Novel NH-3,5-bis(pyridinylmethylene)piperid-4-ones 1a,b were converted into the corresponding N-phosphorylated derivatives 3a-c, 4a-c differing in the substitution at the phosphorus atom (amidophosphates and amidophosphonates), via direct phosphorylation while N-(ω-phosphorylalkyl)-substituted compounds 8a-c were obtained via aldol-crotonic condensation of preformed N-phosphorylalkyl substituted piperidones with the corresponding pyridinecarboxaldehyde. The cytotoxicity screen has revealed that phosphorylated compounds based on E,E-3,5-bis(4-pyridinylmethylene)piperid-4-one framework displayed higher inhibitory properties toward Caov3, A549, KB 3-1 and KB 8-5 human carcinoma cell lines comparing with their analogues with 3-pyridine rings. Introduction of the phosphorus moiety substantially increased the antitumor properties in the case of E,E-3,5-bis(3-pyridinylmethylene)piperid-4-ones derivatives but this influence less pronounced for more active analogues bearing 4-pyridinyl rings. Most of the compounds tested are potent against multi-drug resistant cell line KB 8-5 affording some guidelines for the search of perspective drug-candidates among phosphorus substituted E,E-3,5-bis((hetero)arylidene)piperid-4-ones.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ejmech.2010.09.058 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!