Assessing the toxic effects of ethylene glycol ethers using Quantitative Structure Toxicity Relationship models.

Toxicol Appl Pharmacol

Computational Toxicology Methods Development Laboratory, Division of Toxicology and Environmental Medicine, Agency for Toxic Substances and Disease Registry, Atlanta, GA 30333, USA.

Published: July 2011

Experimental determination of toxicity profiles consumes a great deal of time, money, and other resources. Consequently, businesses, societies, and regulators strive for reliable alternatives such as Quantitative Structure Toxicity Relationship (QSTR) models to fill gaps in toxicity profiles of compounds of concern to human health. The use of glycol ethers and their health effects have recently attracted the attention of international organizations such as the World Health Organization (WHO). The board members of Concise International Chemical Assessment Documents (CICAD) recently identified inadequate testing as well as gaps in toxicity profiles of ethylene glycol mono-n-alkyl ethers (EGEs). The CICAD board requested the ATSDR Computational Toxicology and Methods Development Laboratory to conduct QSTR assessments of certain specific toxicity endpoints for these chemicals. In order to evaluate the potential health effects of EGEs, CICAD proposed a critical QSTR analysis of the mutagenicity, carcinogenicity, and developmental effects of EGEs and other selected chemicals. We report here results of the application of QSTRs to assess rodent carcinogenicity, mutagenicity, and developmental toxicity of four EGEs: 2-methoxyethanol, 2-ethoxyethanol, 2-propoxyethanol, and 2-butoxyethanol and their metabolites. Neither mutagenicity nor carcinogenicity is indicated for the parent compounds, but these compounds are predicted to be developmental toxicants. The predicted toxicity effects were subjected to reverse QSTR (rQSTR) analysis to identify structural attributes that may be the main drivers of the developmental toxicity potential of these compounds.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.taap.2010.10.024DOI Listing

Publication Analysis

Top Keywords

toxicity profiles
12
toxicity
9
ethylene glycol
8
glycol ethers
8
quantitative structure
8
structure toxicity
8
toxicity relationship
8
gaps toxicity
8
health effects
8
eges cicad
8

Similar Publications

CBA-1205 is a novel humanized antibody targeting delta-like 1 homolog (DLK1) that enhances antibody-dependent cellular cytotoxicity activity. DLK1 overexpression has been reported in various cancer types, such as hepatocellular carcinoma and neuroblastoma. CBA-1205 demonstrates potent antitumor activity in multiple tumor models, making it a potential treatment option for DLK1-expressing cancers.

View Article and Find Full Text PDF

PEGylation of Dipeptide Linker Improves Therapeutic Index and Pharmacokinetics of Antibody-Drug Conjugates.

Bioconjug Chem

January 2025

Biotherapeutics Discovery Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.

Hydrophobic payloads incorporated into antibody-drug conjugates (ADCs) typically are superior to hydrophilic ones in tumor penetration and "bystander killing" upon release from ADCs. However, they are prone to aggregation and accelerated plasma clearance, which lead to reduced efficacies and increased toxicities of ADC molecules. Shielding the hydrophobicity of payloads by incorporating polyethylene glycol (PEG) elements or sugar groups into the ADC linkers has emerged as a viable alternative to directly adopting hydrophilic payloads.

View Article and Find Full Text PDF

Haloacetonitriles (HANs) are a class of toxic drinking water disinfection byproducts (DBPs). However, the toxicity mechanisms of HANs remain unclear. We herein investigated the structure-related in vitro toxicity of 6 representative HANs by utilizing complementary bioanalytical approaches.

View Article and Find Full Text PDF

Organic micropollutants, including pharmaceuticals, personal care products, pesticides, and food additives, are widespread in the environment, causing potentially toxic effects. Human waste is a direct source of micropollutants, with the majority of pharmaceuticals being excreted through urine. Urine contains its own microbiota with the potential to catalyze micropollutant biotransformations.

View Article and Find Full Text PDF

Sub-chronic Toxicity Study of Extract Towards Healthy Sprague Dawley Rats.

Iran J Pharm Res

May 2024

Department of Basic Medical Sciences, College of Medicine, University of Sulaimani, Sulaymaniyah, Republic of Iraq.

Background: species are commonly used as spices, flavorings, and food additives. Members of the genus offer many medicinal benefits but may also pose adverse effects on human health.

Objectives: To prepare a crude leaf extract of and assess its toxicity profile towards healthy rats.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!