CoNSEnsX: an ensemble view of protein structures and NMR-derived experimental data.

BMC Struct Biol

Laboratory of Structural Chemistry and Biology, Institute of Chemistry, Eötvös Loránd University, Budapest, Hungary.

Published: October 2010

AI Article Synopsis

Article Abstract

Background: In conjunction with the recognition of the functional role of internal dynamics of proteins at various timescales, there is an emerging use of dynamic structural ensembles instead of individual conformers. These ensembles are usually substantially more diverse than conventional NMR ensembles and eliminate the expectation that a single conformer should fulfill all NMR parameters originating from 10(16) - 10(17) molecules in the sample tube. Thus, the accuracy of dynamic conformational ensembles should be evaluated differently to that of single conformers.

Results: We constructed the web application CoNSEnsX (Consistency of NMR-derived Structural Ensembles with eXperimental data) allowing fast, simple and convenient assessment of the correspondence of the ensemble as a whole with diverse independent NMR parameters available. We have chosen different ensembles of three proteins, human ubiquitin, a small protease inhibitor and a disordered subunit of cGMP phosphodiesterase 5/6 for detailed evaluation and demonstration of the capabilities of the CoNSEnsX approach.

Conclusions: Our results present a new conceptual method for the evaluation of dynamic conformational ensembles resulting from NMR structure determination. The designed CoNSEnsX approach gives a complete evaluation of these ensembles and is freely available as a web service at http://consensx.chem.elte.hu.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2987814PMC
http://dx.doi.org/10.1186/1472-6807-10-39DOI Listing

Publication Analysis

Top Keywords

experimental data
8
ensembles
8
structural ensembles
8
nmr parameters
8
dynamic conformational
8
conformational ensembles
8
consensx
4
consensx ensemble
4
ensemble view
4
view protein
4

Similar Publications

Background: Metastatic spine tumor surgery (MSTS) is often complex and extensive leading to significant blood loss. Allogeneic blood transfusion (ABT) is the mainstay of blood replenishment but with immune-mediated postoperative complications. Alternative blood management techniques (salvaged blood transfusion [SBT]) allow us to overcome such complications.

View Article and Find Full Text PDF

Computational Methods for Predicting Chemical Reactivity of Covalent Compounds.

J Chem Inf Model

January 2025

Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, People's Republic of China.

In recent decades, covalent inhibitors have emerged as a promising strategy for therapeutic development, leveraging their unique mechanism of forming covalent bonds with target proteins. This approach offers advantages such as prolonged drug efficacy, precise targeting, and the potential to overcome resistance. However, the inherent reactivity of covalent compounds presents significant challenges, leading to off-target effects and toxicities.

View Article and Find Full Text PDF

While single-cell experiments provide deep cellular resolution within a single sample, some single-cell experiments are inherently more challenging than bulk experiments due to dissociation difficulties, cost, or limited tissue availability. This creates a situation where we have deep cellular profiles of one sample or condition, and bulk profiles across multiple samples and conditions. To bridge this gap, we propose BuDDI (BUlk Deconvolution with Domain Invariance).

View Article and Find Full Text PDF

Bacterial Leaf Blight (BLB) usually attacks rice in the flowering stage and can cause yield losses of up to 50% in severely infected fields. The resulting yield losses severely impact farmers, necessitating compensation from the regulatory authorities. This study introduces a new pipeline specifically designed for detecting BLB in rice fields using unmanned aerial vehicle (UAV) imagery.

View Article and Find Full Text PDF

Permeability is a measure of the degree to which cells can transport molecules across biological barriers. Units of permeability are distance per unit time (typically cm/s), where accurate measurements are needed to define drug delivery in homeostasis and to model dysfunction occurring during disease. This perspective offers a set of community-led guidelines to benchmark permeability data across multidisciplinary approaches and different biological contexts.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!