Electron cyclotron emission diagnostic for ITER.

Rev Sci Instrum

Institute for Fusion Studies, The University of Texas at Austin, Austin, Texas 78712, USA.

Published: October 2010

Electron temperature measurements and electron thermal transport inferences will be critical to the nonactive and deuterium phases of ITER operation and will take on added importance during the alpha heating phase. The diagnostic must meet stringent criteria on spatial coverage and spatial resolution during full field operation. During the early phases of operation, it must operate equally well at half field. The key to the diagnostic is the front end design. It consists of a quasioptical antenna and a pair of calibration sources. The radial resolution of the diagnostic is less than 0.06 m. The spatial coverage extends at least from the core to the separatrix with first harmonic O-mode being used for the core and second harmonic X-mode being used for the pedestal. The instrumentation used for the core measurement at full field can be used for detection at half field by changing the detected polarization. Intermediate fields are accessible. The electron cyclotron emission systems require in situ calibration, which is provided by a novel hot calibration source. The critical component for the hot calibration source, the emissive surface, has been successfully tested. A prototype hot calibration source has been designed, making use of extensive thermal and mechanical modeling.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.3496978DOI Listing

Publication Analysis

Top Keywords

hot calibration
12
calibration source
12
electron cyclotron
8
cyclotron emission
8
spatial coverage
8
full field
8
half field
8
calibration
5
electron
4
diagnostic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!