A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

What determines the inhibition effectiveness of ATA, BTAH, and BTAOH corrosion inhibitors on copper? | LitMetric

What determines the inhibition effectiveness of ATA, BTAH, and BTAOH corrosion inhibitors on copper?

J Am Chem Soc

Department of Physical and Organic Chemistry, Jozef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia.

Published: November 2010

Three corrosion inhibitors for copper-3-amino-1,2,4-triazole (ATA), benzotriazole (BTAH), and 1-hydroxybenzotriazole (BTAOH)-were investigated by corrosion experiments and atomistic computer simulations. The trend of corrosion inhibition effectiveness of the three inhibitors on copper in near-neutral chloride solution is determined experimentally as BTAH ≳ ATA ≫ BTAOH. A careful analysis of the results of computer simulations based on density functional theory allowed to pinpoint the superior inhibiting action of BTAH and ATA as a result of their ability to form strong N-Cu chemical bonds in deprotonated form. While these bonds are not as strong as the Cl-Cu bonds, the presence of solvent favors the adsorption of inhibitor molecules onto the surface due to stronger solvation of the Cl(-) anions. Moreover, benzotriazole displays the largest affinity among the three inhibitors to form intermolecular aggregates, such as [BTA-Cu](n) polymeric complex. This is another factor contributing to the stability of the protective inhibitor film on the surface, thus making benzotriazole an outstanding corrosion inhibitor for copper. These findings cannot be anticipated on the basis of inhibitors' molecular electronic properties alone, thus emphasizing the importance of a rigorous modeling of the interactions between the components of the corrosion system in corrosion inhibition studies.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ja107704yDOI Listing

Publication Analysis

Top Keywords

inhibition effectiveness
8
corrosion inhibitors
8
computer simulations
8
corrosion inhibition
8
three inhibitors
8
corrosion
7
determines inhibition
4
ata
4
effectiveness ata
4
btah
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!