A novel 40 kDa protein was detected in native thin filaments from catch muscles of the mussel Crenomytilus grayanus. The MALDY-TOF analysis of the protein showed a 40% homology with the calponin-like protein from the muscle of Mytilus galloprovincialis (45 kDa), which has a 36% homology with smooth muscle calponin from chicken gizzard (34 kDa). The amount of the calponin-like protein in thin filaments depends on isolation conditions and varies from the complete absence to the presence in amounts comparable with that of tropomyosin. The most significant factor that determines the contact of the protein in thin filaments is the temperature of solution in which thin filaments are sedimented by ultracentrifugation during isolation. At 22 degrees C and optimal values of both pH and ionic strength of the extraction solution, total calponin-like protein coprecipitates with thin filaments. At 2 degrees C it remains in the supernatant. The 40 kDa calponin-like protein from the mussel Crenomytilus grayanus has similar properties with smooth muscle calponin (34 kDa). It is thermostable and inhibits the actin-activated Mg -ATPase activity of actomyosin. In addition, the 40 kDa calponin-like protein isolated without using thermal treatment contains endogenous kinases. It was found that the calponin-like protein can be phosphorylated by endogenous kinases in the Ca -independent manner. These results indicate that the calponin-like protein from the catch muscle of the mussel Crenomytilus grayanus is a new member of the calponin family. The role of proteins from this family both in muscle and ponmuscle cells is still obscure. We suggest that the calponin-like protein is involved in the Ca -independent regulation of smooth muscle contraction.
Download full-text PDF |
Source |
---|
Cytoskeleton (Hoboken)
February 2024
Departments of Pathology and Cell Biology, Emory University School of Medicine, Atlanta, Georgia, USA.
The calponin family proteins are expressed in both muscle and non-muscle cells and involved in the regulation of cytoskeletal dynamics and cell contractility. In the nematode Caenorhabditis elegans, UNC-87 and CLIK-1 are calponin-related proteins with 42% identical amino acid sequences containing seven calponin-like motifs. Genetic studies demonstrated that UNC-87 and CLIK-1 have partially redundant function in regulating actin cytoskeletal organization in striated and non-striated muscle cells.
View Article and Find Full Text PDFCytoskeleton (Hoboken)
May 2021
Departments of Pathology and Cell Biology, Emory University School of Medicine, Atlanta, Georgia, USA.
The calponin family proteins in vertebrates, including calponin and transgelin (also known as SM22 or NP25), regulate actin-myosin interaction and actin filament stability and are involved in regulation of muscle contractility and cell migration. Related proteins are also present in invertebrates and fungi. Animals have multiple genes encoding calponin family proteins with variable molecular features, which are often expressed in the same tissues or cells.
View Article and Find Full Text PDFJ Biol Chem
August 2020
Department of Pathology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia, USA; Department of Cell Biology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia, USA.
Multicellular organisms have multiple genes encoding calponins and calponin-related proteins, some of which are known to regulate actin cytoskeletal dynamics and contractility. However, the functional similarities and differences among these proteins are largely unknown. In the nematode , UNC-87 is a calponin-related protein with seven calponin-like (CLIK) motifs and is required for maintenance of contractile apparatuses in muscle cells.
View Article and Find Full Text PDFBiomolecules
January 2020
Institute of Marine Research (IIM), CSIC. Eduardo Cabello 6, 36208 Vigo, Spain.
Myticin C is the most studied antimicrobial peptide in the marine mussel . Although it is constitutively expressed in mussel hemocytes and displays antibacterial, antiviral, and chemotactic functions, recent work has suggested that this molecule is mainly activated after tissue injury. Therefore, the main objective of this work was to characterize the hemocytes' transcriptomic response after a myticin C treatment, in order to understand the molecular changes induced by this cytokine-like molecule.
View Article and Find Full Text PDFBiochem Biophys Res Commun
November 2018
Department of Nanopharmaceutical Science, Nagoya Institute of Technology, Japan; Division of Bioengineering, Graduate School of Engineering Science, Osaka University, Japan. Electronic address:
Transgelin-1 (SM22α) has been recognized as a smooth muscle marker and a tumor suppressor, but many details of the working mechanisms remain unclear. Transgelin-1 belongs to the calponin family of actin-binding proteins with an N-terminal calponin homology domain (CH-domain) and a C-terminal calponin-like module (CLIK23). Here, we demonstrate that transgelin-1 interacts with actin stress fibers and podosomes in smooth muscle cells via its type-3 CH-domain, while CLIK23 is dispensable for the binding to the actin structures.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!