The attachment of sugar to flavonoids enhances their solubility. Glycosylation is performed primarily by uridine diphosphate-dependent glycosyltransferases (UGTs). The UGT from Bacillus cereus, BcGT-1 transferred three glucose molecules into kaempferol. The structural analysis of BcGT-1 showed that its substrate binding site is wider than that of flavonoid monoglucosyltransferase of plant. In order to create monoglucosyltransferase from BcGT-1, error-prone polymerase chain reaction (PCR) was performed. We analyzed 150 clones. Among them, two mutants generated only kaempferol O-monoglucoside, albeit with reduced reactivity. Unexpectedly, the two mutants harbored mutations in the amino acids located outside of the active sites. Based on the modeled structure of BcGT-1, it was proposed that the local change in the secondary structure of BcGT-1 caused the alteration of triglucosyltransferase into monoglucosyltransferase.

Download full-text PDF

Source
http://dx.doi.org/10.4014/jmb.1003.03005DOI Listing

Publication Analysis

Top Keywords

bacillus cereus
8
error-prone polymerase
8
polymerase chain
8
chain reaction
8
structure bcgt-1
8
bcgt-1
5
change bacillus
4
cereus flavonoid
4
flavonoid o-triglucosyltransferase
4
o-triglucosyltransferase flavonoid
4

Similar Publications

Bacterial biomineralization of heavy metals and its influencing factors for metal bioremediation.

J Environ Manage

January 2025

Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela, 769 008, Odisha, India. Electronic address:

Increasing industrial pollution and certain hazardous agricultural practices have led to the discharge of heavy toxic metals into the environment. Among different bioremediation techniques, biomineralization is the synthesis of biomineral crystals extracellularly or intracellularly. Several bacteria, such as Bacillus cereus, Pseudomonas stutzeri, Bacillus subtilis, and Lactobacillus sphaericus have been found to induce heavy metal precipitation and mineralization for bioremediation.

View Article and Find Full Text PDF

The extract of the stems of R. Br. yielded three new terpenes () including two diterpenes and one triterpene, named euryachins C-E, as well as three known diterpenes ().

View Article and Find Full Text PDF

Research on natural antioxidants derived from plants has surged due to their potential health benefits. In the current study, the chemical composition, enzyme inhibitory activity, and antimicrobial effects of the Elaeagnus angustifolia L. plant, including leaves, flowers, and flower stalks extracts, were analyzed.

View Article and Find Full Text PDF

Bacterial Shedu immune nucleases share a common enzymatic core regulated by diverse sensor domains.

Mol Cell

December 2024

Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA; Department of Molecular Biology, University of California, San Diego, La Jolla, CA, USA. Electronic address:

Prokaryotes possess diverse anti-bacteriophage immune systems, including the single-protein Shedu nuclease. Here, we reveal the structural basis for activation of Bacillus cereus Shedu. Two cryoelectron microscopy structures of Shedu show that it switches between inactive and active states through conformational changes affecting active-site architecture, which are controlled by the protein's N-terminal domain (NTD).

View Article and Find Full Text PDF

Purpose: Chronic suppurative otitis media (CSOM) is a prominent contributor to preventable hearing loss globally. Probiotic therapy has attracted research interest in human infectious and inflammatory disease. As the most prevalent probiotic, the role of in CSOM remains poorly defined.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!