There is much controversy regarding the extent of axon regeneration/sprouting ability in adult human brain. However, intrinsic differences in axon/neurite growth capability amongst striatal (caudate, putamen, nucleus accumbens) subdivisions could conceivably underlie, in part, their differential vulnerability in degenerative human brain disorders. To establish whether the distribution of axon growth markers in mature human striatum might be uniform or heterogeneous, we measured the intra-striatal pattern, in autopsied brain of normal subjects (n=40, age 18-99), of proteins involved in regulating axon growth. These proteins included polysialylated neural cell adhesion molecule (PSA-NCAM), microtubule-associated proteins TUC-4 (TOAD/Ulip/CRAMP-4) and doublecortin (DCX), and Bcl-2. The distribution of the marker proteins within the striatum was heterogeneous and inversely related to the pattern of dopamine loss previously characterized in Parkinson's disease (PD), with levels in nucleus accumbens>caudate>putamen, ventral>dorsal, and rostral putamen>caudal. In contrast, distribution of glial markers including glial fibrillary acidic protein (GFAP) and human leukocyte antigens (HLA-DRα and HLA-DR/DQ/DPβ), other Bcl-2 family proteins, and control proteins neuron-specific enolase and α-tubulin in the striatum was either homogeneous or had a pattern unmatched to dopamine loss in PD. The putamen also showed more marked age-dependent decreases in concentrations of PSA-NCAM, TUC-4, and DCX and increases in GFAP levels than caudate. We conclude that the intrastriatal pattern of several key axon growth proteins is heterogeneous in adult human brain. Further investigation will be required to establish whether this pattern, which was inversely correlated with the pattern of dopamine loss in PD, is involved to any extent in the pathophysiology of this degenerative disorder.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3377977 | PMC |
http://dx.doi.org/10.1016/j.nbd.2010.10.017 | DOI Listing |
Sci Rep
January 2025
The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe Road, Zhengzhou, 450052, Henan, China.
Netrin-1 (NTN1) is a laminin-related secreted protein involved in axon guidance and cell migration. Previous research has established a significant connection between NTN1 and nervous system development. In recent years, mounting evidence indicates that NTN1 also plays a crucial role in tumorigenesis and tumor progression.
View Article and Find Full Text PDFBiomolecules
January 2025
Institute of Neuroscience, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603022 Nizhny Novgorod, Russia.
Developmental and epileptic encephalopathies (DEEs) are a group of neuropediatric diseases associated with epileptic seizures, severe delay or regression of psychomotor development, and cognitive and behavioral deficits. What sets DEEs apart is their complex interplay of epilepsy and developmental delay, often driven by genetic factors. These two aspects influence one another but can develop independently, creating diagnostic and therapeutic challenges.
View Article and Find Full Text PDFCurr Issues Mol Biol
January 2025
Protosera Inc., Settsu-Shi 566-0002, Osaka, Japan.
Mutations in TSC1 or TSC2 in axons induce tuberous sclerosis complex. Neurological manifestations mainly include epilepsy and autism spectrum disorder (ASD). ASD is the presenting symptom (25-50% of patients).
View Article and Find Full Text PDFCells
January 2025
Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Science, Moscow 117485, Russia.
Traumatic brain injury (TBI) is one of the major causes of severe neurological disorders and long-term dysfunction in the nervous system. Besides inducing neurodegeneration, TBI alters stem cell activity and neurogenesis within primary neurogenic niches. However, the fate of dividing cells in other brain regions remains unclear despite offering potential targets for therapeutic intervention.
View Article and Find Full Text PDFBrain Sci
December 2024
Department of Anatomy, College of Medicine, Inje University, Busan 47392, Republic of Korea.
Background/objectives: α-Synuclein (α-syn) protein is a major pathological agent of familial Parkinson's disease (PD), and its levels and aggregations determine neurotoxicity in PD pathogenesis. Although the pathophysiological functions of α-syn have been extensively studied, its biological functions remain elusive, and there are reports of wild-type (WT) α-syn and two missense mutations of α-syn (A30P and A53T) inducing protective neuritogenesis through neurite outgrowth. However, the function of another α-syn mutation, E46K, has not been fully elucidated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!