Homoleptic rare-earth metal silylamide complexes Ln[N(SiMe(3))(2)](3) (Ln = Y, La, Nd) were grafted onto a series of partially dehydroxylated periodic mesoporous silica (PMS) supports, SBA-15(-500) (d(p) = 7.9 nm), SBA-15LP(-500) (d(p) = 16.6 nm), and MCM-41(-500) (d(p) = 4.1 nm). The hybrid materials Ln[N(SiMe(3))(2)](3)@PMS efficiently catalyze the intramolecular hydroamination/cyclization reaction of 2,2-dimethyl-4-penten-1-amine. Under the prevailing slurry conditions the metal size (Y > La > Nd), the pore size, and the particle morphology affect the catalytic performance. Material Y[N(SiMe(3))(2)](3)@SBA-15LP(-500) displayed the highest activity (TOF = up to 420 h(-1) at 60 °C), with the extralarge pores minimizing restrictive product inhibition and substrate diffusion effects. The catalytic activity of Y[N(SiMe(3))(2)](3)@SBA-15LP(-500) is found to be much higher than that of the molecular counterpart (TOF = up to 54 h(-1)), and its recyclability is demonstrated.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ja107963uDOI Listing

Publication Analysis

Top Keywords

intramolecular hydroamination/cyclization
8
ln[nsime32]3 grafted
8
periodic mesoporous
8
hydroamination/cyclization aminoalkenes
4
aminoalkenes catalyzed
4
catalyzed ln[nsime32]3
4
grafted periodic
4
mesoporous silicas
4
silicas homoleptic
4
homoleptic rare-earth
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!