The ERG as a complementary diagnostic tool in ophthalmoscopy in albino rats.

Lens Eye Toxic Res

Department of Pharmacology, Boehringer Ingelheim KG, Ingelheim/Rhein FRG.

Published: August 1991

Using light induced retinal damage in albino rats as a model, the time of occurrence of lesions was investigated by ophthalmoscopy, electroretinography and light microscopy. Changes in the electroretinogram correlated well with histopathological lesions in the first retinal neuron. In contrast, ophthalmoscopy revealed no evidence of retinal damage even at a time, when the animals were apparently blind. It is concluded that electroretinography is an appropriate experimental tool for detection of retinal damage at a very early stage in toxicological investigation.

Download full-text PDF

Source

Publication Analysis

Top Keywords

retinal damage
12
albino rats
8
erg complementary
4
complementary diagnostic
4
diagnostic tool
4
tool ophthalmoscopy
4
ophthalmoscopy albino
4
rats light
4
light induced
4
retinal
4

Similar Publications

Stress Granule Induction in Rat Retinas Damaged by Constant LED Light.

Invest Ophthalmol Vis Sci

January 2025

Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Química Biológica Ranwel Caputto. Córdoba, Argentina.

Purpose: Stress granules (SGs) are cytoplasmic biocondensates formed in response to various cellular stressors, contributing to cell survival. Although implicated in diverse pathologies, their role in retinal degeneration (RD) remains unclear. We aimed to investigate SG formation in the retina and its induction by excessive LED light in an RD model.

View Article and Find Full Text PDF

Background: Multiple sclerosis (MS) involves a complex interplay between immune-mediated inflammation and neurodegeneration. Recent advances in biomarker research have provided new insights into the molecular underpinnings of MS, including ferritin, neurogranin, Triggering Receptor Expressed on Myeloid cells 2 (TREM2), and neurofilaments light chain.

Objectives: This pilot study aims to investigate the levels of these biomarkers in the cerebrospinal fluid (CSF) of MS patients and explore their associations with clinical, cognitive, and optical coherence tomography (OCT) parameters.

View Article and Find Full Text PDF

Diabetic retinopathy, a microvascular complication of diabetes, is the leading cause of blindness in adults, but the molecular mechanism of its development remains unclear. Retinal mitochondrial DNA is damaged and hypermethylated, and mtDNA-encoded genes are downregulated. Expression of a long noncoding RNA (larger than 200 nucleotides, which does not translate into proteins), encoded by mtDNA, cytochrome B (Lnc), is also downregulated.

View Article and Find Full Text PDF

Eye Axial Length: Is There a Protective Link to Diabetic Retinopathy?

Cureus

December 2024

Optics and Optometry Division, Investigative Techniques in Optometry Research Group, Department of Biomedical Sciences, University of West Attica, Athens, GRC.

Diabetic retinopathy (DR) is a leading cause of vision impairment and blindness globally, particularly among working-age adults. As the prevalence of diabetes continues to rise, understanding factors that influence DR development and progression is increasingly important. Recent studies suggest a protective association between a longer axial length (AL) of the eye and the risk of DR, particularly in myopic individuals.

View Article and Find Full Text PDF

Nanotherapy for Neural Retinal Regeneration.

Adv Sci (Weinh)

January 2025

Beijing Tongren Eye Center, Beijing Key Laboratory of Intraocular Tumor Diagnosis and Treatment, Beijing Ophthalmology&Visual Sciences Key Lab, Medical Artificial Intelligence Research and Verification Key Laboratory of the Ministry of Industry and Information Technology, Beijing Key Laboratory of Intelligent Diagnosis, Treatment and Prevention of Blinding Eye Diseases, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China.

Retinal diseases can severely impair vision and even lead to blindness, posing significant threats to both physical and mental health. Physical retinal regenerative therapies are poised to revolutionize the treatment of various disorders associated with blindness. However, these therapies must overcome the challenges posed by the protective inner and outer blood‒retinal barriers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!