Most of the halo connection devices currently used with both the halo-plaster and halo-vest cannot be adjusted on the different displacement planes during reduction treatment. This makes it difficult to obtain good radiograms for the interposition of connection bars. The connection device designed by the Rizzoli Orthopaedic Institute (D.R. IOR) allows for movements in rotation and translation, preventing loosening of the system. Moreover, radiographic monitoring may be obtained in the best conditions possible, by moving the connection rods backwards or forwards without changing the spinal axis.

Download full-text PDF

Source

Publication Analysis

Top Keywords

connection device
8
connection
5
study development
4
development connection
4
device ior
4
ior halo-plaster
4
halo-plaster halo-jacket
4
halo-jacket immobilization
4
immobilization traction
4
traction systems
4

Similar Publications

The precise localization of epileptic foci with the help of EEG or iEEG signals is still a clinical challenge with current methodology, especially if the foci are not close to individual electrodes. On the research side, dipole reconstruction for focus localization is a topic of recent and current developments. Relatively low numbers of recording electrodes cause ill-posed and ill-conditioned problems in the inversion of lead-field matrices to calculate the focus location.

View Article and Find Full Text PDF

The paper presents a double-radio wireless multimedia sensor node (WMSN) with a camera on board, designed for plant proximal monitoring. Camera sensor nodes represent an effective solution to monitor the crop at the leaf or fruit scale, with details that cannot be retrieved with the same precision through satellites or unnamed aerial vehicles (UAVs). From the technological point of view, WMSNs are characterized by very different requirements, compared to standard wireless sensor nodes; in particular, the network data rate results in higher energy consumption and incompatibility with the usage of battery-powered devices.

View Article and Find Full Text PDF

Due to the openness of communication channels and the sensitivity of the data being collected and transmitted, securing data access and communication in IoT systems requires robust ECC-based authentication and key agreement (AKA) protocols. However, designing an AKA protocol for IoT presents significant challenges, as most IoT sensors are deployed in resource-constrained, unattended environments with limited computational power, connectivity, and storage. To achieve anonymous authentication, existing solutions typically rely on shared temporary public keys to mask device IDs or validate sender certificates, which increases the computational overhead.

View Article and Find Full Text PDF

Current technologies could potentially solve many of the urban problems in today's cities. Many cities already possess cameras, drones, thermometers, pollution air gauges, and other sensors. However, most of these have been designated for use in individual domains within City Hall, creating a maze of individual data domains that cannot connect to each other.

View Article and Find Full Text PDF

Automotive-grade GaN power switches have recently been made available in the market from a growing number of semiconductor suppliers. The exploitation of this technology enables the development of very efficient power converters operating at much higher switching frequencies with respect to components implemented with silicon power devices. Thus, a new generation of automotive power components with an increased power density is expected to replace silicon-based products in the development of higher-performance electric and hybrid vehicles.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!