An unexpected property of unskilled overarm throws is that wrist flexion velocity at ball release does not increase in throws of increasing speed. We investigated the nature of the interaction torques and wrist mechanical properties that have been proposed to produce this property. Twelve recreational throwers made seated 2-D throws, which were used as a model for unskilled throwing. Joint motions were computed from recordings made with search coils; joint torques were calculated from inverse dynamics. Wrist flexion velocity at ball release was actually smaller in fast throws than in slow throws. This was associated in fast throws with the decrease in a large wrist flexor muscle torque (i.e., a calculated residual torque) in the last 40 ms before ball release, and its reversal to an extensor torque. Consequently, wrist flexor muscle torque was unable to oppose a small maintained wrist extensor interaction torque that arose from continuing elbow extension acceleration. The decrease in wrist flexor muscle torque was not associated with a decrease in wrist flexor EMG activity, nor with an increase in wrist extensor EMG activity. These findings support the hypothesis that the smaller wrist flexion velocity at ball release in fast 2-D throws results from a wrist extensor interaction torque and from a large wrist extensor viscoelastic torque. We propose that in fast 3-D throws skilled subjects decelerate elbow extension before ball release to help overcome these wrist extensor torques.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00221-010-2465-2 | DOI Listing |
Pharmaceuticals (Basel)
December 2024
Department of Life and Environmental Sciences, University of Cagliari, S.P. Monserrato-Sestu km 0.700, Monserrato, 09042 Cagliari, Italy.
Background/objectives: Curcumin is well known for its great anti-inflammatory and antioxidant efficacy, representing a potential strategy for the treatment of respiratory disorders. However, several drawbacks, such as chemical instability, poor water solubility and rapid metabolism, result in low bioavailability, limiting its clinical applications. In this study, curcumin nanocrystals were incorporated into mannitol-based microparticles to obtain an inhalable dry powder.
View Article and Find Full Text PDFMolecules
December 2024
Materia Nova Research Center, UMONS Innovation Center, Avenue Nicolas Copernic 3, B-7000 Mons, Belgium.
In this study, a sustainable cellulose-based flame-retardant additive was developed, characterized, and incorporated into polypropylene (PP). Microcrystalline cellulose (Cel) was chemically modified with PO using the solvent-free ball-milling mechanochemistry approach at room temperature. This modification enabled phosphorus grafting onto cellulose, significantly enhancing the cellulose charring ability and improving the thermal stability of the char as revealed by thermogravimetric analysis (TGA).
View Article and Find Full Text PDFJ Hazard Mater
December 2024
State Key Joint Laboratory of Environment Simulation and Pollution Control (SKLESP), Beijing, China; Key Laboratory for Emerging Organic Contaminants Control (BKLEOC), Beijing, China; Laboratory for Environmental Frontier Technologies (BLEFT), School of Environment, Tsinghua University, Beijing 100084, China. Electronic address:
Widespread detection in soils and sediments underscores the potential threats posed by persistent, bioaccumulative and toxic perfluorooctane sulfonate (PFOS) to ecosystems and organisms. Nevertheless, the formidable energy of the C-F bond imparts stability and hampers degradation. This study investigates the potential of boron carbide (BC), a hard-ceramic material often utilized in armor and abrasion contexts, for degrading solid-phase PFOS through ball milling.
View Article and Find Full Text PDFHeliyon
January 2025
Center for Medical Sciences, Ibaraki Prefectural University of Health Sciences, Japan.
Exp Hematol Oncol
January 2025
Bone Marrow Transplantation Center of The First Affiliated Hospital Liangzhu Laboratory, Zhejiang University School of Medicine, No. 79 Qingchun Road, Hangzhou, Zhejiang, China.
Background: Sequential CD19 and CD22 chimeric antigen receptor (CAR)-T cell therapy offers a promising approach to antigen-loss relapse in relapsed/refractory (R/R) B-cell acute lymphoblastic leukemia (B-ALL); however, research in adults remains limited.
Methods: This study aimed to evaluate the efficacy and safety of sequential CD19 and CD22 CAR-T cell therapy in adult patients with R/R B-ALL between November 2020 and November 2023 (ChiCTR2100053871). Key endpoints included the adverse event incidence, overall survival (OS), and leukemia-free survival (LFS).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!