The inhibition of aldosterone activity is a useful approach for preventing the progression of cardiovascular and renal diseases in hypertensive patients. Although the results of our previous in vivo study suggested that N-type calcium channels may have a role in regulating plasma aldosterone levels, the direct relationship between N-type calcium channels and aldosterone production in adrenocortical cells has not been examined. In this study, the analysis of quantitative reverse transcription-PCR, western blotting, and immunocytological staining indicated the possible presence of N-type calcium channels in human adrenocortical cells (H295R cell line). Patch clamp analysis indicated that omega-conotoxin GVIA (CnTX), an N-type calcium channel inhibitor, suppressed voltage-dependent barium currents. During steroidogenesis, CnTX significantly reduced the transient calcium signaling induced by angiotensin II (Ang II) and partially prevented Ang II-induced aldosterone and cortisol formation with no significant influence on CYP11B2 and CYP11B1 mRNA expression. In addition, in α1B calcium channel subunits, knockdown significantly decreased Ang II-induced aldosterone formation with increments in CYP11B2 mRNA expression. We also investigated the inhibitory activities of some types of dihydropyridine calcium channel blockers (CCBs; cilnidipine: L-/N-type CCB, efonidipine: L-/T-type CCB, and nifedipine: L-type CCB), and these agents showed a dose-dependent inhibition effect on Ang II-induced aldosterone and cortisol production. Furthermore, only cilnidipine failed to suppress CYP11B1 expression in H295R cells. These results suggest that N-type calcium channels have a significant role in transducing the Ang II signal for aldosterone (and cortisol) biosynthesis, which may explain the mechanism by which N-type calcium channels regulate plasma aldosterone levels.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/hr.2010.191 | DOI Listing |
Eur J Orthod
December 2024
Division of Paediatric Dentistry & Orthodontics, Faculty of Dentistry, the University of Hong Kong, 34 Hospital Road, Sai Ying Pun, Hong Kong SAR, China.
Background: Periodontal ligament cells (PDLCs) possess mechanotransduction capability, vital in orthodontic tooth movement (OTM) and maintaining periodontal homeostasis. The study aims to elucidate the expression profiles of mechanosensitive ion channel (MIC) families in PDLCs and how the inflammatory mediator alters their expression and function, advancing the understanding of the biological process of OTM.
Methods And Methods: Human PDLCs were cultured and exposed to TNF-α.
Mater Horiz
December 2024
Walter Schottky Institute, Technical University of Munich, 85748 Garching, Germany.
Semiconducting ternary nitrides are a promising class of materials that have received increasing attention in recent years, but often show high free electron concentrations due to the low defect formation energies of nitrogen vacancies and substitutional oxygen, leading to degenerate n-type doping. To achieve non-degenerate behavior, we now investigate a family of amorphous calcium-zinc nitride (Ca-Zn-N) thin films. By adjusting the metal cation ratios, we demonstrate band gap tunability between 1.
View Article and Find Full Text PDFJ Clin Invest
December 2024
Department of Pharmacology and Therapeutics, College of Pharmacy, University of Florida, Gainesville, United States of America.
Transl Psychiatry
December 2024
Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA.
Cell Commun Signal
November 2024
Department of Physiology, College of Medicine, National Taiwan University, Taipei, 100, Taiwan.
Loss-of-function mutations in the human gene encoding the neuron-specific Ca channel Ca2.1 are linked to the neurological disease episodic ataxia type 2 (EA2), as well as neurodevelopmental disorders such as developmental delay and developmental epileptic encephalopathy. Disease-associated Ca2.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!