Evidence for infragravity wave-tide resonance in deep oceans.

Nat Commun

Japan Agency for Marine-Earth Science and Technology, Institute for Research on Earth Evolution, 2-15 Natsushima, Yokosuka, Kanagawa 237-0061, Japan.

Published: October 2010

Ocean tides are the oscillatory motions of seawater forced by the gravitational attraction of the Moon and Sun with periods of a half to a day and wavelengths of the semi-Pacific to Pacific scale. Ocean infragravity (IG) waves are sea-surface gravity waves with periods of several minutes and wavelengths of several dozen kilometres. Here we report the first evidence of the resonance between these two ubiquitous phenomena, mutually very different in period and wavelength, in deep oceans. The evidence comes from long-term, large-scale observations with arrays of broadband ocean-bottom seismometers located at depths of more than 4,000 m in the Pacific Ocean. This observational evidence is substantiated by a theoretical argument that IG waves and the tide can resonantly couple and that such coupling occurs over unexpectedly wide areas of the Pacific Ocean. Through this resonant coupling, some of ocean tidal energy is transferred in deep oceans to IG wave energy.

Download full-text PDF

Source
http://dx.doi.org/10.1038/ncomms1083DOI Listing

Publication Analysis

Top Keywords

deep oceans
12
pacific ocean
8
ocean
5
evidence
4
evidence infragravity
4
infragravity wave-tide
4
wave-tide resonance
4
resonance deep
4
oceans ocean
4
ocean tides
4

Similar Publications

Accurately predicting satellite clock deviation is crucial for improving real-time location accuracy in a GPS navigation system. Therefore, to ensure high levels of real-time positioning accuracy, it is essential to address the challenge of enhancing satellite clock deviation prediction when high-precision clock data is unavailable. Given the high frequency, sensitivity, and variability of space-borne GPS satellite atomic clocks, it is important to consider the periodic variations of satellite clock bias (SCB) in addition to the inherent properties of GPS satellite clocks such as frequency deviation, frequency drift, and frequency drift rate to improve SCB prediction accuracy and gain a better understanding of its characteristics.

View Article and Find Full Text PDF

Advancing forecasting capabilities: A contrastive learning model for forecasting tropical cyclone rapid intensification.

Proc Natl Acad Sci U S A

January 2025

Key Laboratory of Ocean Observation and Forecasting, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266000, China.

Tropical cyclones (TCs), particularly those that rapidly intensify (RI), pose a significant threat due to the uncertainty in forecasting them. RI TC periods, which intensify by at least 13 m/s within 24 h, remain challenging to forecast accurately. Existing models achieve a probability of detection (POD) of 82.

View Article and Find Full Text PDF

Underwater acoustic propagation is a complex phenomenon in the ocean environment. Traditional methods for calculating acoustic propagation loss rely on solving complex partial differential equations. Deep learning methods, leveraging their robust nonlinear approximation capabilities, can model various physical phenomena effectively, significantly reducing computation time and cost.

View Article and Find Full Text PDF

Giant viruses (GVs; ) impact the biology and ecology of a wide range of eukaryotic hosts, with implications for global biogeochemical cycles. Here, we investigated GV niche separation in highly stratified Lake A at the northern coast of Ellesmere Island, Nunavut, Canada. This lake is composed of a layer of ice-covered freshwater that overlies saltwater derived from the ancient Arctic Ocean, and it therefore provides a broad gradient of environmental conditions and ecological habitats, each with a distinct protist community and rich assemblages of associated GVs.

View Article and Find Full Text PDF

The deep Southern Ocean (SO) circulation plays a key role in the storage and release of CO in Earth's climate system. The uptake and release of CO strongly depend on the redistribution of well and poorly ventilated deep ocean water masses. Recently, evidence was found for possible stronger Pacific deep water overturning and subsequent intrusion into the SO during periods of reduced AMOC.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!