Leptin directly acts on peripheral tissues and alters energy metabolism in obese mice. It also has acute beneficial effects on these tissues via its hypothalamic action. However, it is not clear what effect chronic intracerebroventrical (ICV) leptin administration has on cardiac energy metabolism. We examined the effects of chronic ICV leptin on glucose and fatty acid metabolism in isolated working hearts from high-fat-fed and low-fat-fed mice. Mice were fed a high-fat (60% calories from fat) or low-fat (10% calories from fat) diet for 8 weeks before ICV leptin (5 [mu]g/d) for 7 days. In low-fat-fed mice, leptin increased glucose oxidation rates in isolated working hearts when compared with control [203 +/- 21 vs. 793 +/- 93 nmol[middle dot](g dry weight)-1[middle dot]min-1]. In high-fat-fed mice leptin inhibited fatty acid oxidation [476 +/- 73 vs. 251 +/- 38 nmol[middle dot](g[middle dot]dry[middle dot]wt)-1[middle dot]min-1]. The increase in glucose oxidation in low-fat-fed mice was accompanied by increased pyruvate dehydrogenase activity. In high-fat-fed mice, leptin increased cardiac malonyl coenzyme A levels, secondary to a decrease in malonyl coenzyme A decarboxylase expression. These results suggest that ICV leptin alters cardiac energy metabolism opposite to its peripheral effects and that these effects differ depending on energy substrate supply to the mice.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/FJC.0b013e31820014f9 | DOI Listing |
Mol Ther
January 2025
Department of Orthopaedic surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China. Electronic address:
Tumor necrosis factor receptor-associated factor 1 (TRAF1) is a crucial signaling adaptor involved in multiple cellular events. However, its role in regulating osteoclastogenesis and energy metabolism remains unclear. Here, we report that TRAF1 promotes osteoclastogenesis and oxidative phosphorylation (OXPHOS).
View Article and Find Full Text PDFParasit Vectors
January 2025
Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, VIC, 3010, Australia.
Background: Nippostrongylus brasiliensis-a nematode of rodents-is commonly used as a model to study the immunobiology of parasitic nematodes. It is a member of the Strongylida-a large order of socioeconomically important parasitic nematodes of animals. Lipids are known to play essential roles in nematode biology, influencing cellular membranes, energy storage and/or signalling.
View Article and Find Full Text PDFCell Commun Signal
January 2025
Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA.
One hallmark of cancer is the upregulation and dependency on glucose metabolism to fuel macromolecule biosynthesis and rapid proliferation. Despite significant pre-clinical effort to exploit this pathway, additional mechanistic insights are necessary to prioritize the diversity of metabolic adaptations upon acute loss of glucose metabolism. Here, we investigated a potent small molecule inhibitor to Class I glucose transporters, KL-11743, using glycolytic leukemia cell lines and patient-based model systems.
View Article and Find Full Text PDFReprod Biol Endocrinol
January 2025
Department of Molecular and Developmental Medicine, Siena University, Siena, 53100, Italy.
Background: Endocrine-disrupting chemicals (EDCs) interfere with the endocrine system and negatively impact reproductive health. Biochanin A (BCA), an isoflavone with anti-inflammatory and estrogen-like properties, has been identified as one such EDC. This study investigates the effects of BCA on transcription, metabolism, and hormone regulation in primary human granulosa cells (GCs), with a specific focus on the activation of bitter taste receptors (TAS2Rs).
View Article and Find Full Text PDFBMC Surg
January 2025
Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran.
Background: Metabolic and bariatric surgery (MBS) is a suitable solution for the treatment of morbid obesity. Investigating an MBS method that has the best outcomes has always been the main concern of physicians. The current study aimed to compare nutritional, anthropometric, and psychological complications of individuals undergoing various MBS Techniques.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!