At 18,954 nucleotides, the J paramyxovirus (JPV) genome is one of the largest in the family Paramyxoviridae, consisting of eight genes in the order 3'-N-P/V/C-M-F-SH-TM-G-L-5'. To study the function of novel paramyxovirus genes in JPV, a plasmid containing a full-length cDNA clone of the genome of JPV was constructed. In this study, the function of the small hydrophobic (SH) protein of JPV was examined by generating a recombinant JPV lacking the coding sequence of the SH protein (rJPVΔSH). rJPVΔSH was viable and had no growth defect in tissue culture cells. However, more tumor necrosis factor alpha (TNF-α) was produced during rJPVΔSH infection, suggesting that SH plays a role in inhibiting TNF-α production. rJPVΔSH induced more apoptosis in tissue culture cells than rJPV. Virus-induced apoptosis was inhibited by neutralizing antibody against TNF-α, suggesting that TNF-α contributes to JPV-induced apoptosis in vitro. The expression of JPV SH protein inhibited TNF-α-induced NF-κB activation in a reporter gene assay, suggesting that JPV SH protein can inhibit TNF-α signaling in vitro. Furthermore, infection of mice with rJPVΔSH induced more TNF-α expression, indicating that SH plays a role in blocking TNF-α expression in vivo.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3014192 | PMC |
http://dx.doi.org/10.1128/JVI.01673-10 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!