Objective: The islet in type 2 diabetes is characterized by β-cell apoptosis, β-cell endoplasmic reticulum stress, and islet amyloid deposits derived from islet amyloid polypeptide (IAPP). Toxic oligomers of IAPP form intracellularly in β-cells in humans with type 2 diabetes, suggesting impaired clearance of misfolded proteins. In this study, we investigated whether human-IAPP (h-IAPP) disrupts the endoplasmic reticulum-associated degradation/ubiquitin/proteasome system.
Research Design And Methods: We used pancreatic tissue from humans with and without type 2 diabetes, isolated islets from h-IAPP transgenic rats, isolated human islets, and INS 832/13 cells transduced with adenoviruses expressing either h-IAPP or a comparable expression of rodent-IAPP. Immunofluorescence and Western blotting were used to detect polyubiquitinated proteins and ubiquitin carboxyl-terminal hydrolase L1 (UCH-L1) protein levels. Proteasome activity was measured in isolated rat and human islets. UCH-L1 was knocked down by small-interfering RNA in INS 832/13 cells and apoptosis was evaluated.
Results: We report accumulation of polyubiquinated proteins and UCH-L1 deficiency in β-cells of humans with type 2 diabetes. These findings were reproduced by expression of oligomeric h-IAPP but not soluble rat-IAPP. Downregulation of UCH-L1 expression and activity to reproduce that caused by h-IAPP in β-cells induced endoplasmic reticulum stress leading to apoptosis.
Conclusions: Our results indicate that defective protein degradation in β-cells in type 2 diabetes can, at least in part, be attributed to misfolded h-IAPP leading to UCH-L1 deficiency, which in turn further compromises β-cell viability.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3012175 | PMC |
http://dx.doi.org/10.2337/db10-0522 | DOI Listing |
Diabetes Obes Metab
January 2025
Department of Endocrinology, First Hospital of Shanxi Medical University, Taiyuan, China.
Metabolic syndrome-related diseases frequently involve disturbances in skeletal muscle lipid metabolism. The accumulation of lipid metabolites, lipid-induced mitochondrial stress in skeletal muscle cells, as well as the inflammation of adjacent adipose tissue, are associated with the development of insulin resistance and metabolic dysfunction. Consequently, when antidiabetic medications are used to treat various chronic conditions related to hyperglycaemia, the impact on skeletal muscle lipid metabolism should not be overlooked.
View Article and Find Full Text PDFAdv Clin Exp Med
January 2025
Educational and Scientific Center (ESC) "Institute of Biology and Medicine", Taras Shevchenko National University of Kyiv, Ukraine.
Background: The search for early and minimally invasive diagnostic approaches to pancreatic cancer (PC) remains an important issue. One of the most promising directions is to find a sensitive key in the metabolic changes during widespread causes of PC, i.e.
View Article and Find Full Text PDFBackground: Diabetic kidney disease (DKD) is one of the typical complications of type 2 diabetes (T2D), with approximately 10 % of DKD patients experiencing a Rapid decline (RD) in kidney function. RD leads to an increased risk of poor outcomes such as the need for dialysis. Albuminuria is a known kidney damage biomarker for DKD, yet RD cases do not always show changes in albuminuria, and the exact mechanism of RD remains unclear.
View Article and Find Full Text PDFCureus
December 2024
Plastic Surgery, Shri Guru Ram Rai Institute of Medical & Health Sciences, Dehradun, IND.
Pregnancy issues such as gestational hypertension, preeclampsia, and gestational diabetes mellitus (GDM) are significant contributors to long-term cardiovascular diseases (CVDs) in women. Recent research has proved the impact of exercise on improving cardiovascular outcomes, particularly in women with pregnancy-related disorders. This review explores the outcomes of various exercise interventions on cardiovascular health in pregnant women.
View Article and Find Full Text PDFNon-alcoholic fatty liver disease (NAFLD) is a chronic condition characterized by hepatic steatosis in the absence of significant alcohol consumption and is increasingly recognized as the hepatic manifestation of metabolic syndrome (MetS). This review aims to explore the molecular mechanisms underlying the interaction between NAFLD, insulin resistance (IR), and MetS, with a focus on identifying therapeutic targets. A comprehensive review of existing literature on NAFLD, IR, and MetS was conducted.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!