Oncogenic Src requires a wild-type counterpart to regulate invadopodia maturation.

J Cell Sci

Department of Neurobiology and Anatomy, Program in Cancer Cell Biology, Mary Babb Randolph Cancer Center, West Virginia University, Morgantown, West Virginia 26506-9300, USA.

Published: November 2010

The proto-oncogene Src tyrosine kinase (Src) is overexpressed in human cancers and is currently a target of anti-invasive therapies. Activation of Src is an essential catalyst of invadopodia production. Invadopodia are cellular structures that mediate extracellular matrix (ECM) proteolysis, allowing invasive cell types to breach confining tissue barriers. Invadopodia assembly and maturation is a multistep process, first requiring the targeting of actin-associated proteins to form pre-invadopodia, which subsequently mature by recruitment and activation of matrix metalloproteases (MMPs) that facilitate ECM degradation. We demonstrate that active, oncogenic Src alleles require the presence of a wild-type counterpart to induce ECM degradation at invadopodia sites. In addition, we identify the phosphorylation of the invadopodia regulatory protein cortactin as an important mediator of invadopodia maturation downstream of wild-type Src. Distinct phosphotyrosine-based protein-binding profiles in cells forming pre-invadopodia and mature invadopodia were identified by SH2-domain array analysis. These results indicate that although elevated Src kinase activity is required to target actin-associated proteins to pre-invadopodia, regulated Src activity is required for invadopodia maturation and matrix degradation activity. Our findings describe a previously unappreciated role for proto-oncogenic Src in enabling the invasive activity of constitutively active Src alleles.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2972274PMC
http://dx.doi.org/10.1242/jcs.075200DOI Listing

Publication Analysis

Top Keywords

invadopodia maturation
12
invadopodia
9
src
9
oncogenic src
8
wild-type counterpart
8
actin-associated proteins
8
ecm degradation
8
src alleles
8
activity required
8
src requires
4

Similar Publications

YAP signaling orchestrates the endothelin-1-guided invadopodia formation in high-grade serous ovarian cancer.

Biosci Rep

December 2024

Preclinical Models and New Therapeutic Agents Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Regina Elena National Cancer Institute, Rome, Italy.

The high-grade serous ovarian cancer (HG-SOC) is a notoriously challenging disease, characterized by a rapid peritoneal dissemination. HG-SOC cells leverage actin-rich membrane protrusions, known as invadopodia, to degrade the surrounding extracellular matrix (ECM) and invade, initiating the metastatic cascade. In HG-SOC, the endothelin-1 (ET-1)/endothelin A receptor (ETAR)-driven signaling coordinates invadopodia activity, however how this axis integrates pro-oncogenic signaling routes, as YAP-driven one, impacting on the invadopodia-mediated ECM degradation and metastatic progression, deserves a deeper investigation.

View Article and Find Full Text PDF

Linear podosomes display low Cdc42 activity for proplatelet elongation by megakaryocytes.

Biochem Biophys Res Commun

November 2024

Unité de Biologie Moléculaire, Cellulaire et du Développement (MCD, UMR 5077), Centre de Biologie Intégrative (CBI, FR 3743), Université de Toulouse, CNRS, UPS, 118 Route de Narbonne F-31062, Toulouse, France. Electronic address:

Blood platelets result from differentiation of megakaryocytes (MKs) into the bone marrow. It culminates with the extension of proplatelets (PPT) through medullar sinusoids and release of platelets in the blood stream. Those processes are regulated by contact with the microenvironment mediated by podosomes.

View Article and Find Full Text PDF

Head and neck squamous cell carcinoma (HNSCC) is a major health concern due to its high mortality from poor treatment responses and locoregional tumor invasion into life sustaining structures in the head and neck. A deeper comprehension of HNSCC invasion mechanisms holds the potential to inform targeted therapies that may enhance patient survival. We previously reported that doublecortin like kinase 1 (DCLK1) regulates invasion of HNSCC cells.

View Article and Find Full Text PDF

Ectromelia virus (ECTV) is a causative agent of mousepox. It provides a suitable model for studying the immunobiology of orthopoxviruses, including their interaction with the host cell cytoskeleton. As professional antigen-presenting cells, dendritic cells (DCs) control the pericellular environment, capture antigens, and present them to T lymphocytes after migration to secondary lymphoid organs.

View Article and Find Full Text PDF

Fibroblast activation protein drives tumor metastasis via a protease-independent role in invadopodia stabilization.

Cell Rep

October 2023

Department of Pharmacology, University of California, San Diego, School of Medicine, La Jolla, CA 92093, USA; Moores Cancer Center, University of California, San Diego, School of Medicine, La Jolla, CA 92093, USA; Department of Pediatrics, University of California, San Diego, School of Medicine, La Jolla, CA 92093, USA. Electronic address:

During metastasis, tumor cells invade through the basement membrane and intravasate into blood vessels and then extravasate into distant organs to establish metastases. Here, we report a critical role of a transmembrane serine protease fibroblast activation protein (FAP) in tumor metastasis. Expression of FAP and TWIST1, a metastasis driver, is significantly correlated in several types of human carcinomas, and FAP is required for TWIST1-induced breast cancer metastasis to the lung.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!