The kinetochore is a dynamic multiprotein complex assembled at the centromere in mitosis. Exactly how the structure of the kinetochore changes during mitosis and how its individual components contribute to chromosome segregation is largely unknown. Here we have focused on the contribution of the Mis12 complex to kinetochore assembly and function throughout mitosis in Drosophila. We show that despite the sequential kinetochore recruitment of Mis12 complex subunits Mis12 and Nsl1, the complex acts as a single functional unit. mis12 and nsl1 mutants show strikingly similar developmental and mitotic defects in which chromosomes are able to congress at metaphase, but their anaphase movement is strongly affected. While kinetochore association of Ndc80 absolutely depends on both Mis12 and Nsl1, BubR1 localization shows only partial dependency. In the presence of residual centromeric BubR1 the checkpoint still responds to microtubule depolymerization but is significantly weaker. These observations point to a complexity of the checkpoint response that may reflect subpopulations of BubR1 associated with residual kinetochore components, the core centromere, or elsewhere in the cell. Importantly our results indicate that core structural elements of the inner plate of the kinetochore have a greater contribution to faithful chromosome segregation in anaphase than in earlier stages of mitosis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3018309PMC
http://dx.doi.org/10.1534/genetics.110.119628DOI Listing

Publication Analysis

Top Keywords

mis12 complex
12
mis12 nsl1
12
complex acts
8
acts single
8
single functional
8
functional unit
8
chromosome segregation
8
kinetochore
7
complex
5
mis12
5

Similar Publications

To establish bipolar attachments of microtubules to sister chromatids, an inner kinetochore subcomplex, the constitutive centromere-associated network (CCAN), is assembled on centromeric chromatin and recruits the microtubule-binding subcomplex called the KMN network. Since CCAN proteins CENP-C and CENP-T independently bind to the Mis12 complex (Mis12C) of KMN, it is difficult to evaluate the significance of each interaction in cells. Here, we demonstrate the molecular details of the CENP-T-Mis12C interaction using chicken DT40 cells lacking the CENP-C-Mis12C interaction.

View Article and Find Full Text PDF
Article Synopsis
  • - The nervous system's complexity relies on how individual neurons manage dendritic branching, which is crucial for their structure and function.
  • - The protein KNL-1, typically known for its role in cell division, also regulates dendrite branching in specific neurons by controlling the actin cytoskeleton and preventing excessive growth.
  • - Loss of KNL-1 leads to significant changes in the neuron’s structure, demonstrating its essential role in maintaining proper dendrite architecture and highlighting new insights into nervous system development.
View Article and Find Full Text PDF

Hepatocellular carcinoma (HCC) is the most prevalent type of liver cancer. Dosage suppressor of NNF1 (DSN1), a component of the MIS12 kinetochore complex, encodes a kinetochore protein crucial for proper mitotic assembly. The role of DSN1 in HCC remains to be elucidated.

View Article and Find Full Text PDF

α-tubulin detyrosination fine-tunes kinetochore-microtubule attachments.

Nat Commun

November 2024

i3S-Institute for Research and Innovation in Health, University of Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal.

Post-translational cycles of α-tubulin detyrosination and tyrosination generate microtubule diversity, the cellular functions of which remain largely unknown. Here we show that α-tubulin detyrosination regulates kinetochore-microtubule attachments to ensure normal chromosome oscillations and timely anaphase onset during mitosis. Remarkably, detyrosinated α-tubulin levels near kinetochore microtubule plus-ends depend on the direction of chromosome motion during metaphase.

View Article and Find Full Text PDF

Establishing the correct kinetochore-microtubule attachment is crucial for faithful chromosome segregation. The kinetochore has various regulatory mechanisms for establishing correct bipolar attachment. However, how the regulations are coupled is not fully understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!