Age-related loss of stress-induced nuclear proteasome activation is due to low PARP-1 activity.

Free Radic Biol Med

Institute of Biological Chemistry and Nutrition, Department of Biofunctionality and Food Safety, University of Hohenheim, Stuttgart, Germany.

Published: January 2011

Changes in protein turnover are among the dominant metabolic changes during aging. Of special importance is the maintenance of nuclear protein homeostasis to ensure a coordinated cellular metabolism. Therefore, in the nucleus a special PARP-1-mediated mechanism of proteasomal activation exists to ensure a rapid degradation of oxidized nuclear proteins. It was already demonstrated earlier that the cytosolic proteasomal system declines dramatically with aging, whereas the nuclear proteasome remains less affected. We demonstrate here that the stress-mediated proteasomal activation in the nucleus declines during replicative senescence of human fibroblasts. Furthermore, we clearly show that this decline in the PARP-1-mediated proteasomal activation is due to a decline in the expression and activity of PARP-1 in senescent fibroblasts. In a final study we show that this process also happens in vivo, because the protein expression level of PARP-1 is significantly lower in the skin of aged donors compared to that of young ones. Therefore, we conclude that the rate-limiting factor in poly(ADP-ribose)-mediated proteasomal activation in oxidative stress is PARP-1 and not the nuclear proteasome itself.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.freeradbiomed.2010.10.700DOI Listing

Publication Analysis

Top Keywords

proteasomal activation
16
nuclear proteasome
12
nuclear
5
activation
5
proteasomal
5
age-related loss
4
loss stress-induced
4
stress-induced nuclear
4
proteasome activation
4
activation low
4

Similar Publications

Proteasome inhibitors prevent tumor cell proliferation in HHV-8-unrelated PEL-like lymphoma.

Leuk Res Rep

December 2024

Tokyo Women's Medical University, Adachi Medical Center, Department of Medicine, 4-33-1 Kohoku Adachi-ku, Tokyo, Japan.

Primary effusion lymphoma (PEL)-like lymphoma is a rare variant of PEL that exhibits diverse clinical behaviors, ranging from mild to aggressive disease courses. The clinicopathological features and effective treatments for this type of lymphoma have not been well defined. We found that proteasome inhibitors were effective in inhibiting the growth and survival of OGU1 cells, which were derived from a patient with aggressive PEL-like lymphoma, highlighting the critical role of proteasome activity in the proliferation of PEL-like lymphoma cells.

View Article and Find Full Text PDF

Ras Guanine Nucleotide-Releasing Protein-4 Inhibits Erythropoietin Production in Diabetic Mice with Kidney Disease by Degrading HIF2A.

Diabetes Metab J

January 2025

NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China.

Background: In acute and chronic renal inflammatory diseases, the activation of inflammatory cells is involved in the defect of erythropoietin (EPO) production. Ras guanine nucleotide-releasing protein-4 (RasGRP4) promotes renal inflammatory injury in type 2 diabetes mellitus (T2DM). Our study aimed to investigate the role and mechanism of RasGRP4 in the production of renal EPO in diabetes.

View Article and Find Full Text PDF

Mitochondrial protein import stress.

Nat Cell Biol

January 2025

Institute of Biochemistry and Molecular Biology, Faculty of Medicine, University of Bonn, Bonn, Germany.

Mitochondria have to import a large number of precursor proteins from the cytosol. Chaperones keep these proteins in a largely unfolded state and guide them to the mitochondrial import sites. Premature folding, mitochondrial stress and import defects can cause clogging of import sites and accumulation of non-imported precursors, representing a critical burden for cellular proteostasis.

View Article and Find Full Text PDF

Intracellular proteins take part in almost every body function; thus, protein homeostasis is of utmost importance. The ubiquitin proteasome system (UPS) has a fundamental role in protein homeostasis. Its main role is to selectively eradicate impaired or misfolded proteins, thus halting any damage that could arise from the accumulation of these malfunctioning proteins.

View Article and Find Full Text PDF

Prostate cancer, the second leading cause of cancer-related mortality in men, exhibits distinct metabolic reprogramming involving zinc and citrate metabolism. This study investigated whether targeting this unique metabolic profile could offer an effective therapeutic approach. A series of novel oxindole derivatives were synthesized and evaluated for their inhibitory effects on transcription factors (TFs) and antiproliferative activity across various cancer cell lines.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!