Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Single-crystalline CrSi(2) nanostructures with a unique hexagonal nanoweb morphology have been successfully synthesized for the first time. These nanowebs span 150-200 nm and are composed of <112̅0> nanowire segments with a thickness of 10-30 nm. It is proposed that surface charges on the {101̅0} sidewalls and the minimization of electrostatic energy induce the nanoweb formation. Calculations of the electrostatic energies were used to predict the transitions between different modes of bending, which agreed well with the experimental observations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ja106402p | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!