Concentration depth profiles and inventories of solid-phase As, Sb, Pb, and Cu were determined in ²¹⁰Pb-dated cores from an ombrotrophic peat bog in northwest England. Cores were collected from the peat dome and adjacent to an eroding gully. Down-core distributions of As, Sb, Pb, and Cu in the dome core are almost identical. The water table is close to the dome surface with only short-term draw-down. Under these conditions, As, Sb, Pb, and Cu are immobile, allowing the reconstruction of trends in historical contaminant deposition. The peak in atmospheric deposition of As, Sb, Pb, and Cu (4.59, 2.78, 147, and 26.7 mg m⁻² y⁻¹, respectively) occurred during the late 19th century. Stable Pb isotope ratios reveal that Pb deposition during this period was from indigenous and foreign sources. The mean water table is much lower at the gully edge, and there are pronounced interannual fluctuations. These conditions have not affected the integrity of the Pb and Cu records but have caused postdepositional mobilization and redistribution of As and Sb. Cumulative inventories show significant loss of As and Sb at the gully edge site. Long-term water table draw-down in ombrotrophic peat bogs has the potential to alter the geochemistry and fate of previously deposited As and Sb.

Download full-text PDF

Source
http://dx.doi.org/10.1021/es101150wDOI Listing

Publication Analysis

Top Keywords

water table
16
ombrotrophic peat
12
peat bogs
8
gully edge
8
storage behavior
4
behavior ombrotrophic
4
peat
4
bogs contrasting
4
water
4
contrasting water
4

Similar Publications

Both over-exploitation and exploitation reduction of groundwater can alter the conditions of groundwater recharge and discharge, thereby impacting the overall quality of groundwater. This study utilizes hydrogeochemical methods and statistical analysis to explore the spatial and temporal evolution characteristics and influencing factors of groundwater chemistry in the saline-freshwater funnel area of Hengshui City under exploitation reduction. The results showed that: With the exception of the deep freshwater funnel area in the western region, which exhibits a trend of water quality deterioration (Cl accounted for more than 25%), groundwater quality in the other funnel areas demonstrates an improving trend (HCO[Formula: see text] accounted for more than 25%).

View Article and Find Full Text PDF

A chitosan-based sensing membrane for on-site and sensitive dual-channel portable detection and efficient adsorption of Pb in groundwater.

Anal Chim Acta

February 2025

State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Gansu, Lanzhou, 730000, China. Electronic address:

The presence of lead ion (Pb) in groundwater poses a serious risk to human health, even at low levels. Therefore, it is essential to develop a new strategy for both selective detection and effective removal of Pb in groundwater, which has been rarely reported. Here, we developed a multi-functional chitosan-based fluorescent sensing membrane (CM-L/CG) by using a casting method for the sensitive/selective detection and removal of Pb in groundwater.

View Article and Find Full Text PDF

The present study evaluates for the first time the seasonal performance of an innovative green groundwater treatment. The pilot plant combines microalgae-bacteria treatment and a cork-wood biofilter to reduce nitrates, pesticides, antibiotics (ABs), and antibiotic resistance genes (ARGs) from groundwater. Groundwater had nitrate concentrations ranging from 220 to 410 mg/L, while ABs (sulfonamides and fluoroquinolones) and pesticides (triazines) were detected at concentrations ranging from a few ng/L to 150 ng/L.

View Article and Find Full Text PDF

Migration of vanadium oxide nanoparticles in saturated porous media.

J Hazard Mater

January 2025

MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, School of Water Resources and Environment, China University of Geosciences Beijing, Beijing 100083, PR China.

Vanadium oxides nanoparticles (VO-NPs) as emerging functional materials are widely applied in high-technology industries. However, their environmental behaviors remain largely known. In this study, the migration of three common VO-NPs (VO VO, and VO) in saturated porous media has been investigated.

View Article and Find Full Text PDF

Groundwater-dependent ecosystems in areas with industrial land use are at risk of exposure to a PFAS chemicals. We investigated one such system with several known PFAS source areas, where high and low permeability sediments (glacial) coupled with groundwater-lake and groundwater/surface-water interactions created complex 'source to seep' dynamics. Using heat-tracing and chemical methods, numerous preferential groundwater discharge zones were identified and sampled across the upper Quashnet River stream-wetland system in Mashpee, MA, USA, downgradient of Joint Base Cape Cod (JBCC).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!