A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

The interaction of H(2)O(2) with ice surfaces between 203 and 233 K. | LitMetric

The interaction of H(2)O(2) with ice surfaces between 203 and 233 K.

Phys Chem Chem Phys

Max-Planck-Institut für Chemie, Division of Atmospheric Chemistry, Postfach 3060, 55020 Mainz, Germany.

Published: December 2010

The interaction of H(2)O(2) with ice surfaces at temperatures between 203 and 233 K was investigated using a low pressure, coated-wall flow tube equipped with a chemical ionisation/electron impact mass spectrometer. Equilibrium surface coverages of H(2)O(2) on ice were measured at various concentrations and temperatures to derive Langmuir-type adsorption isotherms. H(2)O(2) was found to be strongly partitioned to the ice surface at low temperatures, with a partition coefficient, K(linC), equal to 2.1 × 10(-5) exp(3800/T) cm. At 228 K, this expression results in values of K(linC) which are orders of magnitude larger than the single previous determination and suggests that H(2)O(2) may be significantly partitioned to the ice phase in cirrus clouds. The partition coefficient for H(2)O(2) was compared to several other trace gases which hydrogen-bond to ice surfaces and a good correlation with the free energy of condensation found. For this class of trace gas a simple parameterisation for calculating K(linC)(T) from thermodynamic properties was established.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c0cp01656jDOI Listing

Publication Analysis

Top Keywords

h2o2 ice
12
ice surfaces
12
interaction h2o2
8
203 233
8
h2o2 partitioned
8
partitioned ice
8
partition coefficient
8
ice
6
h2o2
5
surfaces 203
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!