Controlling cellular P-TEFb activity by the HIV-1 transcriptional transactivator Tat.

PLoS Pathog

Laboratoire de Biologie Moléculaire Eucaryote du CNRS, UMR5099, IFR109 CNRS, Université Paul Sabatier, Toulouse, France.

Published: October 2010

The human immunodeficiency virus 1 (HIV-1) transcriptional transactivator (Tat) is essential for synthesis of full-length transcripts from the integrated viral genome by RNA polymerase II (Pol II). Tat recruits the host positive transcription elongation factor b (P-TEFb) to the HIV-1 promoter through binding to the transactivator RNA (TAR) at the 5'-end of the nascent HIV transcript. P-TEFb is a general Pol II transcription factor; its cellular activity is controlled by the 7SK small nuclear RNA (snRNA) and the HEXIM1 protein, which sequester P-TEFb into transcriptionally inactive 7SK/HEXIM/P-TEFb snRNP. Besides targeting P-TEFb to HIV transcription, Tat also increases the nuclear level of active P-TEFb through promoting its dissociation from the 7SK/HEXIM/P-TEFb RNP by an unclear mechanism. In this study, by using in vitro and in vivo RNA-protein binding assays, we demonstrate that HIV-1 Tat binds with high specificity and efficiency to an evolutionarily highly conserved stem-bulge-stem motif of the 5'-hairpin of human 7SK snRNA. The newly discovered Tat-binding motif of 7SK is structurally and functionally indistinguishable from the extensively characterized Tat-binding site of HIV TAR and importantly, it is imbedded in the HEXIM-binding elements of 7SK snRNA. We show that Tat efficiently replaces HEXIM1 on the 7SK snRNA in vivo and therefore, it promotes the disassembly of the 7SK/HEXIM/P-TEFb negative transcriptional regulatory snRNP to augment the nuclear level of active P-TEFb. This is the first demonstration that HIV-1 specifically targets an important cellular regulatory RNA, most probably to promote viral transcription and replication. Demonstration that the human 7SK snRNA carries a TAR RNA-like Tat-binding element that is essential for the normal transcriptional regulatory function of 7SK questions the viability of HIV therapeutic approaches based on small drugs blocking the Tat-binding site of HIV TAR.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2954905PMC
http://dx.doi.org/10.1371/journal.ppat.1001152DOI Listing

Publication Analysis

Top Keywords

7sk snrna
16
hiv-1 transcriptional
8
transcriptional transactivator
8
transactivator tat
8
nuclear level
8
level active
8
active p-tefb
8
human 7sk
8
tat-binding site
8
site hiv
8

Similar Publications

The phosphatase PP1 sustains global transcription by promoting RNA polymerase II pause release.

Mol Cell

December 2024

Cancer Institute & Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Medical Epigenetics, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China. Electronic address:

RNA polymerase II progression from initiation to elongation is driven in part by a cascade of protein kinases acting on the core transcription machinery. Conversely, the corresponding phosphatases, notably PP2A and PP1-the most abundant serine-threonine phosphatases in cells-are thought to mainly impede polymerase progression, respectively restraining pause release at promoters and elongation at terminators. Here, we reveal an unexpected role of PP1, within the phosphatase 1 nuclear targeting subunit (PNUTS)-PP1 complex, in sustaining global transcriptional activation in human cells.

View Article and Find Full Text PDF

RNA polymerase III synthesizes a wide range of noncoding RNAs shorter than 400 nucleotides in length. These RNAs are involved in protein synthesis (tRNA, 5S rRNA, and 7SL RNA), maturation, and splicing of different types of RNA (RPR, MRP RNA, and U6 snRNA), regulation of transcription (7SK RNA), replication (Y RNA), and intracellular transport (vault RNA). BC200 and BC1 RNA genes are transcribed by RNA polymerase III in neurons only where these RNAs regulate protein synthesis.

View Article and Find Full Text PDF

Background: SOX2 is a determinant transcription factor that governs the balance between stemness and differentiation by influencing transcription and splicing programs. The role of SOX2 is intricately shaped by its interactions with specific partners. In the interactome of SOX2 in mouse embryonic stem cells (mESCs), there is a cohort of heterogeneous nuclear ribonucleoproteins (hnRNPs) that contributes to multiple facets of gene expression regulation.

View Article and Find Full Text PDF

Using an immunofluorescence assay based on CRISPR-dCas9-gRNA complexes that selectively bind to the HIV LTR (HIV Cas-FISH), we traced changes in HIV DNA localization in primary effector T cells from early infection until the cells become quiescent as they transition to memory cells. Unintegrated HIV DNA colocalized with CPSF6 and HIV capsid (CA, p24) was found in the cytoplasm and nuclear periphery at days 1 and 3 post infection. From days 3 to 7, most HIV DNA was distributed primarily in the nuclear intermediate euchromatic compartment and was transcribed.

View Article and Find Full Text PDF

Actin associates with actively elongating genes and binds directly to the Cdk9 subunit of P-TEFb.

J Biol Chem

March 2024

Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland. Electronic address:

Nuclear actin has been demonstrated to be essential for optimal transcription, but the molecular mechanisms and direct binding partner for actin in the RNA polymerase complex have remained unknown. By using purified proteins in a variety of biochemical assays, we demonstrate a direct and specific interaction between monomeric actin and Cdk9, the kinase subunit of the positive transcription elongation factor b required for RNA polymerase II pause-release. This interaction efficiently prevents actin polymerization, is not dependent on kinase activity of Cdk9, and is not involved with releasing positive transcription elongation factor b from its inhibitor 7SK snRNP complex.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!