Background: Perception of biological motion is linked to the action perception system in the human brain, abnormalities within which have been suggested to underlie impairments in social domains observed in autism spectrum conditions (ASC). However, the literature on biological motion perception in ASC is heterogeneous and it is unclear whether deficits are specific to biological motion, or might generalize to form-from-motion perception.

Methodology And Principal Findings: We compared psychophysical thresholds for both biological and non-biological form-from-motion perception in adults with ASC and controls. Participants viewed point-light displays depicting a walking person (Biological Motion), a translating rectangle (Structured Object) or a translating unfamiliar shape (Unstructured Object). The figures were embedded in noise dots that moved similarly and the task was to determine direction of movement. The number of noise dots varied on each trial and perceptual thresholds were estimated adaptively. We found no evidence for an impairment in biological or non-biological object motion perception in individuals with ASC. Perceptual thresholds in the three conditions were almost identical between the ASC and control groups.

Discussion And Conclusions: Impairments in biological motion and non-biological form-from-motion perception are not across the board in ASC, and are only found for some stimuli and tasks. We discuss our results in relation to other findings in the literature, the heterogeneity of which likely relates to the different tasks performed. It appears that individuals with ASC are unaffected in perceptual processing of form-from-motion, but may exhibit impairments in higher order judgments such as emotion processing. It is important to identify more specifically which processes of motion perception are impacted in ASC before a link can be made between perceptual deficits and the higher-level features of the disorder.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2956672PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0013491PLOS

Publication Analysis

Top Keywords

biological motion
20
perceptual thresholds
12
biological non-biological
12
non-biological form-from-motion
12
form-from-motion perception
12
motion perception
12
unaffected perceptual
8
biological
8
thresholds biological
8
perception
8

Similar Publications

Purpose: To identify genes and patient factors that are related to the development of arthrofibrosis in patients after anterior cruciate ligament (ACL) reconstruction and to develop a prognostic model.

Methods: The study included patients diagnosed with ACL injury who underwent ACL reconstruction. Patients were enroled consecutively and divided into non-fibrotic (controls) and fibrotic (cases) groups until a balanced sample of matched case-control was achieved.

View Article and Find Full Text PDF

Emergence of opposing arrows of time in open quantum systems.

Sci Rep

January 2025

School of Mathematics and Physics, University of Surrey, GU2 7XH, Guildford, United Kingdom.

Deriving an arrow of time from time-reversal symmetric microscopic dynamics is a fundamental open problem in many areas of physics, ranging from cosmology, to particle physics, to thermodynamics and statistical mechanics. Here we focus on the derivation of the arrow of time in open quantum systems and study precisely how time-reversal symmetry is broken. This derivation involves the Markov approximation applied to a system interacting with an infinite heat bath.

View Article and Find Full Text PDF

This study presents an advanced dynamic finite element (FE) model of multiple components of the breast to examine the biomechanical impact of different types of physical activities and activity intensity on the breast tissues. Using 4D scanning and motion capture technologies, dynamic data are collected during different activities. The accuracy of the FE model is verified based on relative mean absolute error (RMAE), and optimal material parameters are identified by using a validated stepwise grid search method.

View Article and Find Full Text PDF

Biological activities observed in living systems occur as the output of which nanometer-, submicrometer-, and micrometer-sized structures and tissues non-linearly and dynamically behave through chemical reaction networks, including the generation of various molecules and their assembly and disassembly. To understand the essence of the dynamic behavior in living systems, simpler artificial objects that exhibit cell-like non-linear phenomena have been recently constructed. However, most objects exhibiting cell-like dynamics have been found through trial-and-error experiments, and there are no strategies for designing them as molecular systems.

View Article and Find Full Text PDF

Facile preparation of iridium-based AIE polymer dots for sensitive electrochemiluminescence immunoassay of CD44 protein.

Anal Chim Acta

March 2025

Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China; Department of Chemistry, Sungkyunkwan University, Suwon, 16419, Republic of Korea. Electronic address:

The development of aggregation-induced emission (AIE) luminophores is a fascinating and promising topic in electrochemiluminescence (ECL) bioanalysis. Herein, the AIE-active but water-insoluble [Ir(bt)₂(acac)] (bt = 2-phenylbenzothiazole, acac = acetylacetonate) was encapsulated within poly(styrene-maleic anhydride) (PSMA) using a simple nanoprecipitation method. This encapsulation strategy could effectively limit the free motion of Ir(bt)₂(acac) and trigger the aggregation-induced electrochemiluminescence (AIECL) effect.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!