Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In this paper, we introduce a novel application of volume modeling techniques on laser Benign Prostatic Hyperplasia (BPH) therapy simulation. The core technique in our system is an algorithm for simulating the tissue vaporization process by laser heating. Different from classical volume CSG operations, our technique takes experimental data as the guidance to determine the vaporization amount so that only a specified amount of tissue is vaporized in each time. Our algorithm uses a predictor-corrector strategy. First, we apply the classical CSG algorithm on a tetrahedral grid based distance field to estimate the vaporized tissue amount. Then, a volume-correction phase is applied on the distance field. To improve the performance, we further propose optimization approaches for efficient implementation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TVCG.2010.221 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!