While a number of information visualization software frameworks exist, creating new visualizations, especially those that involve novel visualization metaphors, interaction techniques, data analysis strategies, and specialized rendering algorithms, is still often a difficult process. To facilitate the creation of novel visualizations we present a new software framework, behaviorism, which provides a wide range of flexibility when working with dynamic information on visual, temporal, and ontological levels, but at the same time providing appropriate abstractions which allow developers to create prototypes quickly which can then easily be turned into robust systems. The core of the framework is a set of three interconnected graphs, each with associated operators: a scene graph for high-performance 3D rendering, a data graph for different layers of semantically linked heterogeneous data, and a timing graph for sophisticated control of scheduling, interaction, and animation. In particular, the timing graph provides a unified system to add behaviors to both data and visual elements, as well as to the behaviors themselves. To evaluate the framework we look briefly at three different projects all of which required novel visualizations in different domains, and all of which worked with dynamic data in different ways: an interactive ecological simulation, an information art installation, and an information visualization technique.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TVCG.2010.126 | DOI Listing |
Anal Chem
January 2025
Department of Earth and Environmental Sciences, University of Texas at Arlington, Arlington, Texas 76019, United States.
Fluorescence fluctuation spectroscopy experiments were conducted to better understand the complex mass transport dynamics of organic molecules in liquid-filled nanoporous media. Anodic aluminum oxide (AAO) membranes incorporating 10 and 20 nm diameter cylindrical pores were employed as model materials. Nile red (NR) dye was used as a fluorescent tracer.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
School of Physics, Dalian University of Technology, Dalian 116024, P. R. China.
Gradient porous carbon has become a potential electrode material for energy storage devices, including the aqueous zinc-ion hybrid capacitor (ZIHC). Compared with the sufficient studies on the fabrication of ZIHCs with high electrochemical performance, there is still lack of in-depth understanding of the underlying mechanisms of gradient porous structure for energy storage, especially the synergistic effect of ultramicropores (<1 nm) and micropores (1-2 nm). Here, we report a design principle for the gradient porous carbon structure used for ZIHC based on the data-mining machine learning (ML) method.
View Article and Find Full Text PDFJ Prim Care Community Health
January 2025
University of Rochester, Rochester, NY, USA.
Objectives: This qualitative study explored the beliefs and values influencing healthcare providers' delivery of gender-affirming care (GAC) to transgender and gender-diverse (TGD) youth amidst current social and political dynamics.
Methods: The study PI conducted 43 semi-structured interviews with providers across states with varying GAC legislation. Responses from 41 providers were analyzed in this paper.
Nonlinear Dynamics Psychol Life Sci
January 2025
Marquette University, Milwaukee, WI.
The articles in this special issue examine the contributions of Jeffrey A. Goldstein to the understanding of emergence as a formal group of processes. Applications include work teams, organizations, ecologies of organizations, and societies.
View Article and Find Full Text PDFJ Phys Chem A
January 2025
Computer Modelling Group, 3710 33 St NW, Calgary, Alberta T2L 2M1, Canada.
Coarse-grained molecular dynamics simulation is widely accepted for assessment of a large complex biological system, but it may also lead to a misleading conclusion. The challenge is to simulate protein structural dynamics (such as folding-unfolding behavior) due to the lack of a necessary backbone flexibility. This study developed a standard coarse-grained model directly from the protein atomic structure and amino acid coarse-grained FF (such as MARTINI FF v2.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!