One of the most important and elusive goals of molecular biology is the formulation of a detailed, atomic-level understanding of the process of protein folding. Fast-folding proteins with low free-energy barriers have proved to be particularly productive objects of investigation in this context, but the design of fast-folding proteins was previously driven largely by experiment. Dramatic advances in the attainable length of molecular dynamics simulations have allowed us to characterize in atomic-level detail the folding mechanism of the fast-folding all-β WW domain FiP35. In the work reported here, we applied the biophysical insights gained from these studies to computationally design an even faster-folding variant of FiP35 containing only naturally occurring amino acids. The increased stability and high folding rate predicted by our simulations were subsequently validated by temperature-jump experiments. The experimentally measured folding time was 4.3 μs at 80 °C-about three times faster than the fastest previously known protein with β-sheet content and in good agreement with our prediction. These results provide a compelling demonstration of the potential utility of very long molecular dynamics simulations in redesigning proteins well beyond their evolved stability and folding speed.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jmb.2010.10.023DOI Listing

Publication Analysis

Top Keywords

fast-folding proteins
8
molecular dynamics
8
dynamics simulations
8
folding
5
computational design
4
design experimental
4
experimental testing
4
testing fastest-folding
4
fastest-folding β-sheet
4
β-sheet protein
4

Similar Publications

FlowBack: A Generalized Flow-Matching Approach for Biomolecular Backmapping.

J Chem Inf Model

January 2025

Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States.

Coarse-grained models have become ubiquitous in biomolecular modeling tasks aimed at studying slow dynamical processes such as protein folding and DNA hybridization. These models can considerably accelerate sampling but it remains challenging to accurately and efficiently restore all-atom detail to the coarse-grained trajectory, which can be vital for detailed understanding of molecular mechanisms and calculation of observables contingent on all-atom coordinates. In this work, we introduce FlowBack as a deep generative model employing a flow-matching objective to map samples from a coarse-grained prior distribution to an all-atom data distribution.

View Article and Find Full Text PDF

Engrailed homeodomain (EngHD), a highly charged transcription factor regulating over 200 genes, is a fast-folding protein. Recent studies have shown that the abundant charged residues in EngHD not only facilitate protein-DNA interactions but also influence the conformational disorder of its native structure. However, the mechanisms by which electrostatic interactions modulate the folding of EngHD remain unclear.

View Article and Find Full Text PDF

Protein folding: Funnel model revised.

Comput Struct Biotechnol J

December 2024

Chair of Medical Biochemistry, Jagiellonian University Medical College, Kopernika 7, 31-034 Kraków, Poland.

The spatial structure of proteins, largely determined by their amino acid sequences, is also dependent on the environmental conditions under which the folding process takes place. In aqueous environments, exposure of polar amino acids is the driving factor, whereas protein stabilization in amphipathic membranes requires exposure to hydrophobic residues. This observation can be extended to all other environmental conditions under which proteins exhibit biological activity and, most importantly, to the folding process.

View Article and Find Full Text PDF

Impact of Hydrodynamic Interactions on the Kinetic Pathway of Protein Folding.

Phys Rev Lett

March 2024

Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan.

Protein folding is a fundamental process critical to cellular function and human health, but it remains a grand challenge in biophysics. Hydrodynamic interaction (HI) plays a vital role in the self-organization of soft and biological materials, yet its role in protein folding is not fully understood despite folding occurring in a fluid environment. Here, we use the fluid particle dynamics method to investigate many-body hydrodynamic couplings between amino acid residues and fluid motion in the folding kinetics of a coarse-grained four-α-helices bundle protein.

View Article and Find Full Text PDF

The Role of Force Fields and Water Models in Protein Folding and Unfolding Dynamics.

J Chem Theory Comput

March 2024

Institute for General, Inorganic and Theoretical Chemistry, Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, A-6020 Innsbruck, Austria.

Protein folding is a fascinating, not fully understood phenomenon in biology. Molecular dynamics (MD) simulations are an invaluable tool to study conformational changes in atomistic detail, including folding and unfolding processes of proteins. However, the accuracy of the conformational ensembles derived from MD simulations inevitably relies on the quality of the underlying force field in combination with the respective water model.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!