Brush borders were prepared from pig intestinal mucosa and the membrane proteins solubilized with either Triton X-100 or papain. Proteins, thus released, were used as antigens to raise antisera in rabbits. The immunoglobulin G fractions were isolated and shown by the double layer immunofluorescence staining technique to react only with the brush border region of the enterocyte. The antibodies obtained were used in immunoelectrophoretic studies on the brush border proteins. Eight hydrolytic activities were identified by the use of histo-chemical staining methods. These were the microsomal aminopeptidase (EC 3.4.11.2), aspartate aminopeptidase (EC 3.4.11.7), dipeptidyl peptidase IV (EC 3.4.14.X), lactase (EC 3.2.1.23), glucoamylase (EC 3.2.1.3), sucrase (EC 3.2.1.48), isomaltase (EC 3.2.1.10) and alkaline phosphatase (EC 3.1.3.1). In addition, at least four faint immunoprecipitates were formed but none of these were identified.

Download full-text PDF

Source
http://dx.doi.org/10.1016/0005-2795(77)90163-5DOI Listing

Publication Analysis

Top Keywords

brush border
12
immunoelectrophoretic studies
8
pig intestinal
8
border proteins
8
studies pig
4
brush
4
intestinal brush
4
proteins
4
proteins brush
4
brush borders
4

Similar Publications

Understanding the early interactions between severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and human airway epithelial cells is essential for unraveling viral replication and spread mechanisms. In this study, we investigated the early dynamics of airway epithelial cells during SARS-CoV-2 infection using well-differentiated human nasal and tracheal epithelial cell cultures by incorporating three publicly available single-cell RNA sequencing datasets. We identified a previously uncharacterized cell population, termed virus-rich intermediate (VRI) cells, representing an intermediate differentiation stage between basal and ciliated cells.

View Article and Find Full Text PDF

Background: Chemotherapy-induced mucositis (CIM) significantly impacts quality of life and reduces survival in patients treated with specific chemotherapeutic agents. However, effective clinical treatments for CIM remain limited. Intravenous immunoglobulin (IVIg), a therapeutic derived from pooled human plasma, is widely used to treat inflammatory diseases.

View Article and Find Full Text PDF

Development of a Caco-2-based intestinal mucosal model to study intestinal barrier properties and bacteria-mucus interactions.

Gut Microbes

December 2025

Department of Biomolecular Health Sciences, Division of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.

The intestinal mucosal barrier is a dynamic system that allows nutrient uptake, stimulates healthy microbe-host interactions, and prevents invasion by pathogens. The mucosa consists of epithelial cells connected by cellular junctions that regulate the passage of nutrients covered by a mucus layer that plays an important role in host-microbiome interactions. Mimicking the intestinal mucosa for assays, particularly the generation of a mucus layer, has proven to be challenging.

View Article and Find Full Text PDF

[Effect and related mechanism of acetate in alleviating acute kidney injury in septic rats through G-protein coupled receptor 43].

Zhonghua Wei Zhong Bing Ji Jiu Yi Xue

November 2024

Department of Critical Medicine Center, the First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, Xinjiang Uygur Autonomous Region, China. Corresponding author: Yu Xiangyou, Email:

Objective: To explore the protective effect and mechanism of acetate on sepsis-induced acute kidney injury (AKI) in rats.

Methods: Male Sprague-Dawley (SD) rats were divided into sham operation group (Sham group), sepsis group caused by cecal ligation and puncture (CLP group), and acetate pretreatment group [NaA group, gavage sodium acetate (NaA) 300 mg/kg twice a day for 7 consecutive days before CLP] using a random number table method, with 7 rats in each group. The blood was taken from the main abdominal artery 24 hours after modeling, and renal tissue was collected from the rats.

View Article and Find Full Text PDF

Overexpressed Palladin Rescues Enteropathogenic E. coli (EPEC) Pedestal Lengths in ArpC2 Depleted Cells.

Cytoskeleton (Hoboken)

December 2024

Department of Biological Sciences, Centre for Cell Biology, Development, and Disease, Simon Fraser University, Burnaby, British Columbia, Canada.

Enteropathogenic Escherichia coli (EPEC) causes diarrheal disease. Once ingested, these extracellular pathogens attach to the intestinal epithelial cells of their host, collapse the localized microvilli, and generate actin-rich structures within the host cells that are located beneath the attached bacteria, called "pedestals." Palladin is an actin-associated protein that cross-links and stabilizes actin filaments.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!