Conventional anticancer drug sensitivity testing methods, such as succinate dehydrogenase inhibition (SDI), histoculture drug-response assay (HDRA) and collagen gel droplet embedded culture drug sensitivity testing (CD-DST), all require primary culturing and are extremely complex tests that require considerable time for analysis. A major drawback of these methods is that if culturing is not performed properly, ambiguous results are produced. Therefore, we developed an oxygen electrode apparatus that uses cellular metabolism as an indicator of anticancer drug sensitivity and investigated its usefulness in 29 breast cancer patients with the following histopathological classifications: papillotubular carcinoma (n= 15); solid tubular carcinoma (n= 6); and scirrhous carcinoma (n= 8). Comparison of anticancer drug sensitivity testing results obtained using the conventional HDRA method and those obtained using the oxygen electrode apparatus showed significant reproducibility between the two methods. In addition, similar anticancer drug sensitivity testing results using the oxygen electrode apparatus were obtained for in vivo testing of nude mice transplanted with established cancer cell lines. These findings suggest that the oxygen electrode apparatus is a useful procedure in anticancer drug sensitivity testing that provides better reproducibility and that is faster, more convenient, and less expensive than other testing methods.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1749-0774.2010.00092.x | DOI Listing |
Correct treatment of chronic osteomyelitis depends on proper identification of the bone-infecting microorganism, but it is difficult identify the specific etiology in previously treated patients and in those with implants. Small colony variants auxotrophyc for menadione had been related with false-negative results in culture of patient with chronic osteomyelitis, but menadione supplementation can increase bone culture performance. The purpose was to evaluate the effect of menadione supplementation on isolates in bone cultures, in a cohort of patients with osteomyelitis, Medellín- Colombia.
View Article and Find Full Text PDFAnal Chem
January 2025
Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
Ligand binding to membrane proteins initiates numerous therapeutic processes. Surface plasmon resonance (SPR), a popular method for analyzing molecular interactions, has emerged as a promising tool for in situ determination of membrane protein binding kinetics owing to its label-free detection, high surface sensitivity, and resistance to intracellular interference. However, the excitation of SPR relies on noble metal films, typically gold, which are biologically incompatible and can cause fluorescence quenching.
View Article and Find Full Text PDFT-cell prolymphocytic leukemia (T-PLL) is an aggressive lymphoid malignancy with limited treatment options. To discover new treatment targets for T-PLL, we performed high-throughput drug sensitivity screening on 30 primary patient samples ex-vivo. After screening over 2'800 unique compounds, we found T-PLL to be more resistant to most drug classes, including chemotherapeutics, compared to other blood cancers.
View Article and Find Full Text PDFStroke
February 2025
Neurovascular Research Unit, Pharmacology Department, Complutense Medical School, Instituto Investigación Hospital 12 Octubre, Madrid, Spain (G.D., B.D., A.M., J.M.P., I.L.).
Background: Acute ischemic stroke treatment typically involves tissue-type plasminogen activator (tPA) or tenecteplase, but about 50% of patients do not achieve successful reperfusion. The causes of tPA resistance, influenced by thrombus composition and timing, are not fully clear. Neutrophil extracellular traps (NETs), associated with poor outcomes and reperfusion resistance, contribute to thrombosis.
View Article and Find Full Text PDFPLoS One
January 2025
Departamento de Bioquímica y Medicina Molecular, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, México.
Introduction: The methicillin-resistant Staphylococcus aureus (MRSA) genome varies by geographical location. This study aims to determine the genomic characteristics of MRSA using whole-genome sequencing (WGS) data from medical centers in Mexico and to explore the associations between antimicrobial resistance genes and virulence factors.
Methods: This study included 27 clinical isolates collected from sterile sites at eight centers in Mexico in 2022 and 2023.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!